5,881 research outputs found

    Localization-delocalization transition on a separatrix system of nonlinear Schrodinger equation with disorder

    Full text link
    Localization-delocalization transition in a discrete Anderson nonlinear Schr\"odinger equation with disorder is shown to be a critical phenomenon - similar to a percolation transition on a disordered lattice, with the nonlinearity parameter thought as the control parameter. In vicinity of the critical point the spreading of the wave field is subdiffusive in the limit t+t\rightarrow+\infty. The second moment grows with time as a powerlaw tα\propto t^\alpha, with α\alpha exactly 1/3. This critical spreading finds its significance in some connection with the general problem of transport along separatrices of dynamical systems with many degrees of freedom and is mathematically related with a description in terms fractional derivative equations. Above the delocalization point, with the criticality effects stepping aside, we find that the transport is subdiffusive with α=2/5\alpha = 2/5 consistently with the results from previous investigations. A threshold for unlimited spreading is calculated exactly by mapping the transport problem on a Cayley tree.Comment: 6 pages, 1 figur

    A topological approximation of the nonlinear Anderson model

    Full text link
    We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrodinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance-overlap in phase space, ranging from a fully developed chaos involving Levy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on a Cayley tree. It is found in vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t\rightarrow+\infty. The second moment grows with time as a powerlaw t^\alpha, with \alpha = 1/3. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of stripes propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the transport.Comment: 20 pages, 2 figures; improved text with revisions; accepted for publication in Physical Review

    Fractional Fourier detection of L\'evy Flights: application to Hamiltonian chaotic trajectories

    Full text link
    A signal processing method designed for the detection of linear (coherent) behaviors among random fluctuations is presented. It is dedicated to the study of data recorded from nonlinear physical systems. More precisely the method is suited for signals having chaotic variations and sporadically appearing regular linear patterns, possibly impaired by noise. We use time-frequency techniques and the Fractional Fourier transform in order to make it robust and easily implementable. The method is illustrated with an example of application: the analysis of chaotic trajectories of advected passive particles. The signal has a chaotic behavior and encounter L\'evy flights (straight lines). The method is able to detect and quantify these ballistic transport regions, even in noisy situations

    Review of Some Promising Fractional Physical Models

    Full text link
    Fractional dynamics is a field of study in physics and mechanics investigating the behavior of objects and systems that are characterized by power-law non-locality, power-law long-term memory or fractal properties by using integrations and differentiation of non-integer orders, i.e., by methods of the fractional calculus. This paper is a review of physical models that look very promising for future development of fractional dynamics. We suggest a short introduction to fractional calculus as a theory of integration and differentiation of non-integer order. Some applications of integro-differentiations of fractional orders in physics are discussed. Models of discrete systems with memory, lattice with long-range inter-particle interaction, dynamics of fractal media are presented. Quantum analogs of fractional derivatives and model of open nano-system systems with memory are also discussed.Comment: 38 pages, LaTe
    corecore