6,698 research outputs found

    Dispersive properties of high order nedelec/edge element approximation of the time-harmonic Maxwell equations

    Get PDF
    The dispersive behaviour of high-order Næ#169;dæ#169;lec element approximation of the time harmonic Maxwell equations at a prescribed temporal frequency ω on tensor-product meshes of size h is analysed. A simple argument is presented, showing that the discrete dispersion relation may be expressed in terms of that for the approximation of the scalar Helmholtz equation in one dimension. An explicit form for the one-dimensional dispersion relation is given, valid for arbitrary order of approximation. Explicit expressions for the leading term in the error in the regimes where ωh is small, showing that the dispersion relation is accurate to order 2p for a pth-order method; and in the high-wavenumber limit where 1«ωh, showing that in this case the error reduces at a super-exponential rate once the order of approximation exceeds a certain threshold, which is given explicitly

    Multi-patch discontinuous Galerkin isogeometric analysis for wave propagation: explicit time-stepping and efficient mass matrix inversion

    Full text link
    We present a class of spline finite element methods for time-domain wave propagation which are particularly amenable to explicit time-stepping. The proposed methods utilize a discontinuous Galerkin discretization to enforce continuity of the solution field across geometric patches in a multi-patch setting, which yields a mass matrix with convenient block diagonal structure. Over each patch, we show how to accurately and efficiently invert mass matrices in the presence of curved geometries by using a weight-adjusted approximation of the mass matrix inverse. This approximation restores a tensor product structure while retaining provable high order accuracy and semi-discrete energy stability. We also estimate the maximum stable timestep for spline-based finite elements and show that the use of spline spaces result in less stringent CFL restrictions than equivalent piecewise continuous or discontinuous finite element spaces. Finally, we explore the use of optimal knot vectors based on L2 n-widths. We show how the use of optimal knot vectors can improve both approximation properties and the maximum stable timestep, and present a simple heuristic method for approximating optimal knot positions. Numerical experiments confirm the accuracy and stability of the proposed methods

    Spectral/hp element methods: recent developments, applications, and perspectives

    Get PDF
    The spectral/hp element method combines the geometric flexibility of the classical h-type finite element technique with the desirable numerical properties of spectral methods, employing high-degree piecewise polynomial basis functions on coarse finite element-type meshes. The spatial approximation is based upon orthogonal polynomials, such as Legendre or Chebychev polynomials, modified to accommodate C0-continuous expansions. Computationally and theoretically, by increasing the polynomial order p, high-precision solutions and fast convergence can be obtained and, in particular, under certain regularity assumptions an exponential reduction in approximation error between numerical and exact solutions can be achieved. This method has now been applied in many simulation studies of both fundamental and practical engineering flows. This paper briefly describes the formulation of the spectral/hp element method and provides an overview of its application to computational fluid dynamics. In particular, it focuses on the use the spectral/hp element method in transitional flows and ocean engineering. Finally, some of the major challenges to be overcome in order to use the spectral/hp element method in more complex science and engineering applications are discussed

    Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods

    Get PDF
    We investigate the potential of linear dispersion–diffusion analysis in providing direct guidelines for turbulence simulations through the under-resolved DNS (sometimes called implicit LES) approach via spectral/hp methods. The discontinuous Galerkin (DG) formulation is assessed in particular as a representative of these methods. We revisit the eigensolutions technique as applied to linear advection and suggest a new perspective to the role of multiple numerical modes, peculiar to spectral/hp methods. From this new perspective, “secondary” eigenmodes are seen to replicate the propagation behaviour of a “primary” mode, so that DG's propagation characteristics can be obtained directly from the dispersion–diffusion curves of the primary mode. Numerical dissipation is then appraised from these primary eigencurves and its effect over poorly-resolved scales is quantified. Within this scenario, a simple criterion is proposed to estimate DG's effective resolution in terms of the largest wavenumber it can accurately resolve in a given hp approximation space, also allowing us to present points per wavelength estimates typically used in spectral and finite difference methods. Although strictly valid for linear advection, the devised criterion is tested against (1D) Burgers turbulence and found to predict with good accuracy the beginning of the dissipation range on the energy spectra of under-resolved simulations. The analysis of these test cases through the proposed methodology clarifies why and how the DG formulation can be used for under-resolved turbulence simulations without explicit subgrid-scale modelling. In particular, when dealing with communication limited hardware which forces one to consider the performance for a fixed number of degrees of freedom, the use of higher polynomial orders along with moderately coarser meshes is shown to be the best way to translate available degrees of freedom into resolution power

    A Space-Time Discontinuous Galerkin Trefftz Method for time dependent Maxwell's equations

    Full text link
    We consider the discretization of electromagnetic wave propagation problems by a discontinuous Galerkin Method based on Trefftz polynomials. This method fits into an abstract framework for space-time discontinuous Galerkin methods for which we can prove consistency, stability, and energy dissipation without the need to completely specify the approximation spaces in detail. Any method of such a general form results in an implicit time-stepping scheme with some basic stability properties. For the local approximation on each space-time element, we then consider Trefftz polynomials, i.e., the subspace of polynomials that satisfy Maxwell's equations exactly on the respective element. We present an explicit construction of a basis for the local Trefftz spaces in two and three dimensions and summarize some of their basic properties. Using local properties of the Trefftz polynomials, we can establish the well-posedness of the resulting discontinuous Galerkin Trefftz method. Consistency, stability, and energy dissipation then follow immediately from the results about the abstract framework. The method proposed in this paper therefore shares many of the advantages of more standard discontinuous Galerkin methods, while at the same time, it yields a substantial reduction in the number of degrees of freedom and the cost for assembling. These benefits and the spectral convergence of the scheme are demonstrated in numerical tests

    Numerical convergence of nonlinear nonlocal continuum models to local elastodynamics

    Full text link
    We quantify the numerical error and modeling error associated with replacing a nonlinear nonlocal bond-based peridynamic model with a local elasticity model or a linearized peridynamics model away from the fracture set. The nonlocal model treated here is characterized by a double well potential and is a smooth version of the peridynamic model introduced in n Silling (J Mech Phys Solids 48(1), 2000). The solutions of nonlinear peridynamics are shown to converge to the solution of linear elastodynamics at a rate linear with respect to the length scale ϵ\epsilon of non local interaction. This rate also holds for the convergence of solutions of the linearized peridynamic model to the solution of the local elastodynamic model. For local linear Lagrange interpolation the consistency error for the numerical approximation is found to depend on the ratio between mesh size hh and ϵ\epsilon. More generally for local Lagrange interpolation of order p≥1p\geq 1 the consistency error is of order hp/ϵh^p/\epsilon. A new stability theory for the time discretization is provided and an explicit generalization of the CFL condition on the time step and its relation to mesh size hh is given. Numerical simulations are provided illustrating the consistency error associated with the convergence of nonlinear and linearized peridynamics to linear elastodynamics
    • …
    corecore