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Linear dispersion-diffusion analysis and its application to under-resolved
turbulence simulations using discontinuous Galerkin spectral/Ap methods

R.C. Moura, S.J. Sherwin!, J. Peiré

Aeronautics Department, Imperial College London, SW7 2AZ, United Kingdom

Abstract

We investigate the potential of linear dispersion-diffusion analysis in providing direct guidelines for turbulence sim-
ulations through the under-resolved DNS (sometimes called implicit LES) approach via spectral/aAp methods. The
discontinuous Galerkin (DG) formulation is assessed in particular as a representative of these methods. We revisit the
eigensolutions technique as applied to linear advection and suggest a new perspective on the role of multiple numeri-
cal modes, peculiar to spectral/hp methods. From this new perspective, “secondary” eigenmodes are seen to replicate
the propagation behaviour of a “primary” mode, so that DG’s propagation characteristics can be obtained directly
from the dispersion-diffusion curves of the primary mode. Numerical dissipation is then appraised from these primary
eigencurves and its effect over poorly-resolved scales is quantified. Within this scenario, a simple criterion is pro-
posed to estimate DG’s effective resolution in terms of the largest wavenumber it can accurately resolve in a given hp
approximation space, also allowing us to present points per wavelength estimates typically used in spectral and finite
difference methods. Although strictly valid for linear advection, the devised criterion is tested against (1D) Burgers
turbulence and found to predict with good accuracy the beginning of the dissipation range on the energy spectra of
under-resolved simulations. The analysis of these test cases through the proposed methodology clarifies why and how
the DG formulation can be used for under-resolved turbulence simulations without explicit subgrid-scale modelling.
In particular, when dealing with communication limited hardware which forces one to consider the performance for
a fixed number of degrees of freedom, the use of higher polynomial orders along with moderately coarser meshes is
shown to be the best way to translate available degrees of freedom into resolution power.

Keywords: Under-resolved DNS, Implicit LES, Dispersion-diffusion analysis, Discontinuous Galerkin formulation,
Spectral/hp methods

1. Introduction

Amongst a variety of existing methodologies for the simulation of turbulence, the under-resolved DNS (uDNS)
approach has received increasing attention in recent years. In this approach, the goal is to resolve only the largest
scales of motion, as in classical LES (Large Eddy Simulation), but no explicit modelling is used for the smallest scales.
Accordingly, the unfiltered Navier-Stokes are simulated in a manner similar to DNS (Direct Numerical Simulation),
except that an insufficient number of degrees of freedom is employed to resolve the flow and hence the use of the
term under-resolved DNS. A distinction is also made between the uDNS strategy and the so-called implicit LES
(iLES) approach [1]. In our interpretation, the term iLES is reserved for schemes where the numerical truncation
has been demonstrated to implicitly mimic LES-like models. We note that for traditional low-order schemes, where
the leading truncation error usually takes the form of a second-order diffusion operator, some kind of eddy-viscosity
modelling can normally be recognized. On the other hand, we are adopting the uDNS expression for appropriately
stabilized high-order methods since no direct correspondence between numerical errors and standard subgrid-scale
(SGS) models is anticipated in this case.

Bypassing the need for explicit SGS models makes both iLES and uDNS approaches attractive since most of the
theoretical and implementation complexities of traditional LES are avoided. It is argued that the former approaches
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are also advantageous because, even if implicit turbulence models lack physics, the absence of modelling terms in
the computations makes it possible to use a finer mesh than the one that would be used in classic LES for the same
cost. As emphasized by Pope [2], LES models must be appraised not only by their physical accuracy, but also by their
related computational cost, which together define a kind of effective performance for a given model. In a similar line
of thought, Spalart points out that most works advocating sophisticated modelling “fail to show a clear advantage over
the same-cost LES with a simplistic model” [3].

High-order spectral/hp methods [4] have been successfully used in under-resolved turbulence simulations with
different discretizations, such as: the continuous Galerkin (CG) method [5, 6]; the discontinuous Galerkin (DG) for-
mulation [7, 8]; the spectral difference (SD) method [9, 10]; as well as with the correction procedure via reconstruction
(CPR) scheme [11, 12]. Apart from the CG discretization, where stability is usually enforced by added SVV (Spectral
Vanishing Viscosity) [13], all these methods incorporate in their formulation some form of stabilization by means
of upwind Riemann fluxes. It is recognized that these (either SVV or upwind fluxes) are the techniques responsible
for providing dissipation at the under-resolved scales. We note that truncation error is also expected to contribute to
the numerical dissipation. Other than that and regardless of the aforementioned ongoing applications, there is still
little knowledge on why and how one can use spectral/Ap methods for under-resolved turbulence simulations. The
present study aims to clarify these issues by focusing on the discontinuous Galerkin formulation as a representative
of high-order spectral/ip methods.

An early discussion on the suitability of DG for turbulence simulations was reported in [14, 15], where the scheme
was found to successfully predict low-order statistics with fewer degrees of freedom (DOFs) than traditional numeri-
cal methods. More extensive assessments [16, 17] in the DNS of turbulent channel flows revealed that DG can predict
high-order statistics with accuracy comparable to that of spectral methods for an equivalent number of DOFs. Regard-
ing under-resolved simulations, a detailed study carried in [18] showed that, for a given number of DOFs, increasing
the polynomial order is more effective than refining the mesh in order to improve the accuracy. This study consid-
ered discretizations up to 16th-order in the solution of the Taylor-Green vortex [19] test case and demonstrated that
DG-based uDNS computations can outperform sophisticated LES methods in terms of accuracy (on a DOF basis)
as long as the polynomial order is sufficiently high. This result was further confirmed by an extensive investigation
reported in [8] where practical engineering test cases were considered. The effect of different types of mesh elements
was assessed in [20] again through the Taylor-Green vortex problem and these were found to impact flow resolution
mainly at small scales. This study however only considered discretizations up to 4th-order.

In the context of iLES, the modified equation analysis technique is usually employed [21] to justify why certain
numerical schemes are particularly suited for implicit large eddy simulations. By resorting to Taylor series to rewrite
discrete derivative expressions, modified equation analysis can reveal which PDE is actually governing a numerical
solution. Due to the presence of truncation terms, the resulting PDE (referred to as the modified equation) differs from
the physical PDE being discretized. In the analysis of low-order schemes for the discretization of the Navier-Stokes
equations, a non-linear form of eddy-viscosity can sometimes be recognized in the first truncation terms [1].

An exploratory study on modified equation analysis for linear advection with DG was carried by the authors
in [22]. Unfortunately, comparisons between modified equations and DG’s dispersion-diffusion errors known from
eigensolution analysis [23, 24] were not encouraging. We found that the representation of DG’s numerical errors may
not be satisfactory if just the first few truncation terms are taken into account. In some cases, up to ten truncation terms
needed to be considered for an accurate representation. Moreover, the correspondence was verified to fail sometimes
for the poorly-resolved wavenumbers, in which case truncation terms are not even representative of the numerical
errors. Since these issues are unlikely to disappear for non-linear problems, a different approach is followed here.

In this work, DG’s numerical errors are assessed directly through the eigensolution analysis, with particular focus
on how numerical dissipation affects the under-resolved scales. While revisiting the eigensolutions technique, we
discuss the role played by multiple numerical modes (peculiar to spectral/Ap methods) and suggest a new perspective
on the matter, from which “secondary” eigenmodes are seen to replicate the propagation behaviour of a “primary”
mode. As a result, DG’s propagation characteristics are obtained directly from the dispersion-diffusion curves of the
primary mode. Then, from the primary diffusion eigencurves, a simple criteria (named ‘the 1% rule’) is proposed
to estimate the effective resolution of the DG scheme for a given hp approximation space. More specifically, this
rule estimates the maximum wavenumber that can be resolved accurately given the mesh spacing and polynomial
order employed. Though strictly valid for linear advection, the proposed criteria is tested against one-dimensional
Burgers turbulence and found to reliably predict the beginning of the dissipation range on turbulent energy spectra.
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We highlight then the potential of linear dispersion-diffusion analysis in providing direct guidelines for the simulation
of turbulence through the uDNS approach via spectral/hp methods.

This paper is organized as follows. The DG formulation for linear advection in one dimension is briefly summa-
rized in Sec. 2. The eigensolution analysis technique is then revisited in Sec. 3, in which the role of secondary modes
is discussed and where the 1% rule is introduced. In Sec. 4, this rule is tested against Burgers turbulence and the re-
sults are appraised in order to clarify why and how one can use spectral/Ap methods (DG in particular) for turbulence
simulations through the uDNS approach.

2. The semi-discrete DG formulation

Assuming suitable initial and boundary conditions are given, we consider the following scalar hyperbolic equation

over the one-dimensional domain Q: 5 of
u
—+—=0, 1
ot Ox M
where f = f(u) is the flux function, solely dependent on the solution u# = u(x, 7). In the DG framework, the solution
domain is divided among non-overlapping elements Q, such that Q = | J, Q.. Within each of these elements, the

solution is then approximated by a weighted sum of basis functions ¢;, namely

P

uo, = " ci(0) $,(8), &)

Jj=0

where in this study ¢; is chosen to be the orthonormal Legendre polynomial of degree j, defined in the standard
domain Qg = [-1, 1], see [4, 25] for details. In order to obtain the coefficients c;, the projection of Eq. (1) is required
to vanish locally, i.e.

ou Jf
f¢,(5+a)dx—0 forie{0,...,P} . 3)
Inserting Eq. (2) into Eq. (3) and given that the chosen basis functions are orthonormal, one can arrive at
h dc; 9, Aif )
iiddly” 4
2 fﬂ“affff” “

where 7 is the size (length) of element .. Inter-element communication is allowed by the introduction of the numer-
ical flux function, f, in the second integral on the right-hand side of Eq. (4) leading to

h(?c,- _ ’ .y £
hia fQ FOLE = (POl + Tl ©)

where QL and QF denote the left and right boundaries of element €., respectively. The numerical flux f = flus, ug)
is a function of the values at the left (1s) and right (ug) sides of each interface considered. The full upwind flux is

considered here, namely
Sflug) + f(ug) + g Ug — Ug
2 ou 2

The dispersion-diffusion analysis performed in Sec. 3 will focus on the advection equation, namely Eq. (1) with
f = au, where a is the constant advection speed. In this case, Eq. (5) becomes

]F(”e, Uug) =

(©)

h 66,

P
2a 01 Z:“ijcj — (@glor + (@glor - v
=0

where the constants y;; and the (normalized) numerical flux & = f/a are given by

Ug + Ug
2 2 ’

f gbj — d.f and @i(ug, ug) = (8)
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where S, = l|al/a is the sign of a. Using Egs. (7-8) and assuming an equispaced mesh, the semi-discrete linear
advection problem can be expressed in vector form for each mesh element as

h o¢

— — =L&+CC+Re, 9

20 51 L +Cc Cr 9)
where @ = {cy,...,cp}" and the indices L and R refer to the neighbour elements respectively at the left and right sides

of the (central) element considered. The matrices in Eq. (9) are given by

1 1

Cij = + 5(1 =S ei(=Dg;(-1) - 5(1 +8a)gi(+1) pi(+1), (10)
1 1

L= 5(1 +8)di(=D)¢;(+1) , R;; = —5(1 =S)¢i(+Dg;i(=1). (1D

3. Dispersion-diffusion analysis for DG

We apply the eigensolution analysis to the DG discretization of the linear advection equation to investigate the
effect of numerical errors for under-resolved simulations. This technique has been applied for DG in different ways
[23, 26, 24, 27, 28]. Here we follow the so-called temporal approach where a real wavenumber k is considered for the
initial condition and a complex wave frequency w is assumed to govern the numerical solution.

When the analysis is applied to spectral/zp methods, several numerical modes are found in connection to each sin-
gle (Fourier/Eigen) mode prescribed for the initial condition. As noted in [29], this fact is interpreted in different ways
in the literature, but it is frequently assumed that only one numerical mode is important while all the others should
be simply dismissed for being spurious. This question is also discussed in the present section and new perspective
on the matter is offered, from which all the eigenmodes are seen to complement the propagation characteristics of a
particular mode, here referred to as the primary one.

The fundamentals of eigensolution analysis for DG are reviewed in Sec. 3.1. Dispersion and diffusion curves are
addressed in Sec. 3.2, where the role of multiple eigenmodes is discussed. Sec. 3.3 discusses the effect of numerical
errors on the under-resolved scales and proposes a simple criterion to estimate the largest wavenumber that can be
accurately resolved by a given hp setting.

3.1. Wave-like solutions and eigenmodes

Following the eigensolution analysis framework, one seeks for numerical solutions consistent with the analytic
eigenfunctions of the linear advection equation in the form (hereafter, i = V—1)

u = explitkx —wo)] , (12)

or, more specifically, solutions in which the element-wise approximating coefficients are related to the above wave-
like solution through projection. Using orthonormal polynomials ¢; as basis functions, the coefficients associated to
element €2, are given by

0= [ utueh2.00,@0de (13)
where x, denotes the centre of Q,. Hence, simple éubstitution yields
2(t) = @ expli(kx, — wt)] , (14)
in which @ = {ay, ..., ap}’ and
@j = fg exp (ikh&/2) ¢(&) d§ . (15)

We stress that a single Fourier eigenmode can energize several numerical eigenmodes since there is no one-to-one
correspondence between the employed polynomials and complex exponential functions which represent the eigen-
functions of the partial differential equation. Moreover, as discussed in Sec. 3.2, each of these numerical eigenmodes
will behave as if related to different harmonics of the baseline wavenumber k of the original Fourier eigenmode.
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It is worth noting that for orthonormal Legendre basis functions ¢;, one can analytically obtain a; = a;(z), with
z = kh/2, from the relations

. VE (s
z_i(_) (6)
Z Z Z
and, forn > 1,

Vidn + 6 inz z

Ty = 220 [M,, sinz + i(w —cosz)M,,+1 +i ) M+ 12 My am] , (17)
Z Z
m=1

where M; = mod(j, 2) is the modulus of j after division by two.
In the temporal eigenanalysis, we use Eq. (14) with real k and complex w into the semi-discrete advection problem
given in Eq. (9) to obtain

h . )
—(=iw)é=|LeM+C+ReM| e, (18)
2a

which, by defining M =2 [Le‘”‘h +C+ Re”"h], is equivalent to

—iw;h(?z M(kh) @ . (19)

This is clearly an eigenvalue problem (with P + 1 solutions) of the discrete problem. The eigenvalue / eigenvector
pairs (A,,, V) are related to the variables in the discrete problem by
ia
Wm = Z/lm and &m o Vm 5 (20)
in which, without loss of generality, we define @,, = V,,/s,, being s, the sum of the entries of ¥,,. Hence, the general
numerical solution (for element €,) can be written as

P
(1) = ) Anin explitiex, — wpb)] e2))
m=0
or
p
ci(t) = 3" AV i explithx, = wa)] (22)
m=0
in which V = {i,..., Vp} and the constants A,, can be obtained from the initial condition. More specifically, when

u(x,0) = exp(ikx) a simple projection yields
P
D" A Vi explikae) = d explikxe) , (23)
m=0

where Eqs. (14) and (21) were used with t = 0. Accordingly, A= {Ag,...,Ap}T is given by A=vg.
Using Eq. (22), the element-wise numerical solution within Q, reads

P P P
U&0) = D 085 = D" D AnV i (&) explithre = wa)], (24)
j=0 =0 m=0
which can be rewritten as
P P
Uo(€1) = ) Ay Tu(€) explith, = wn)] = exp(ikxe) D A (&) exp(=iwn) (25)
m=0 m=0



where the element-wise eigenfunctions 0,,(¢) of the discrete problem were introduced, namely

P
Tn =D Vinei(©. (26)

J=0

Each o, can be interpreted as the transformation of the associated ¥,, into physical space. It should be understood
from Eq. (25) that while the factor exp(ikx,) accounts for wave-like variations from one element to another, the
discrete eigenfunctions o,,(¢) must account for wave-like variations inside the elements. The effect of the latter will
be particularly significant in simulations with coarse meshes and high values of P.

In summary, Egs. (21-25) indicate that the numerical solution is composed by P + 1 modes which, through their
respective values of w,,, propagate with different dispersion and diffusion characteristics. The eigenvalues 4,, of the
discrete problem are related to these characteristics of the numerical approximation to the original advection problem
and so are discussed in the next section.

3.2. Dispersion / diffusion curves and secondary modes

Following the exact dispersion relation for the linear advection equation, w = ak, it is possible to define a mod-
ified wavenumber k* as the ratio between the (numerical) angular frequency and the advection speed. One modified
wavenumber can therefore be obtained from each angular frequency w,,, such that w,, = ak},. The natural interpreta-
tion is that each eigenmode (1) of the numerical solution will behave as if related to &, instead of k. From Eq. (19),
we note that M is a function of k and so both w,, and k;, are also functions of the ‘baseline’ wavenumber k.

Employing the relation between w,, and 4,, given in Eq. (20) yields

Real(ky,) = elOvn) __Imag(d,) mag(n,) _ Real(ly)
a

L Imag(k,) = ; 27)
For pure advection, deviations of Real(k*) from k are related to dispersion (lead or lag phase errors) while deviations
of Imag(k*) from zero corresponds to diffusion (numerical dissipation), assuming Imag(k*) < 0.

The case P = 2 is considered in Fig. 1(a), where the real and imaginary parts of the modified wavenumbers k;,
are displayed against the baseline wavenumber k, each curve corresponding to a different eigenmode (/). As usual,
the axes are normalized by the number of degrees of freedom employed, Ngor o< (P + 1)/h. We also note that in a
spectral/hp discretization h/(P + 1) is representative of the smallest length scale that can be captured by the Ap setting.
The mode in the centre of these plots, i.e. the one that recovers k* = k as k — 0, will be identified as the “primary”
mode, while the remaining branches are simply called “secondary” modes. The role played by different numerical
modes is discussed in what follows.

Since each k* =k, h/(P + 1) is a periodic function of k = kh /(P + 1), with period 2, it is sufficient to analyse k*l
for — < k < x, as shown in Fig. 1(a), which displays this periodicity for the real and imaginary parts of k* All the
eigencurves of secondary modes appearing in Fig. 1(a) are just replicas of the primary mode’s eigencurve translated of
27/(P + 1) in the normalized k-axis, both for dispersion and diffusion. This symmetry can easily be verified for higher
values of P and happens to be true not only for the eigenvalues 4,,, but also for the eigenvectors ¥,,. The eigenvectors’
symmetry is illustrated in Fig. 1(b) for the eigenmatrix’s entries V' ,, again for the case P = 2.

After realising that the eigencurves of secondary modes are simply (equispaced) replicas of the primary mode’s
eigencurves, one can conclude that all the propagation properties of the secondary modes are essentially contained in
the eigencurves of the primary mode. In fact, given k, the eigenvalues and eigenvectors of the numerical solution can
be found on the different (P + 1) eigencurves at a fixed value of k or, alternatively, on the values along the primary
mode’s eigencurves at the equivalent equispaced (P+1) values of k. Thanks to the symmetries, these equivalent values
of k are simply replicas of the baseline k separated by 27r/(P + 1) in the normalized k-axis. Both ways of obtaining the
eigenvalues are illustrated in Fig. 2(a) for P = 2 and k = /6 ~ 0.52. The procedure for the eigenvectors is similarly
straightforward, but has to be performed in a component-wise manner.

The nature of the secondary modes can be interpreted as follows. If a single Fourier component is prescribed as
initial condition through a projection, the /p discretization space will perceive it as a variety of polynomial components
which will correspond to a series of numerical eigenfunctions, instead of just one. We note nevertheless that such
representation corresponds to the optimal approximation (in the L> norm) provided that a Galerkin projection is used.
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Numerical Dispersion, P = 2 Numerical Diffusion, P = 2

Real (k*h) /(P +1)
Imag (k* h )/ (P + 1)

&
(5]

3 2 1 0 1 2 3 -3 -2 -1 0 1 2 3
khi(P+1 Khi(P+1
(a) ( ) ( )
T E
> P
=]
& £
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
khi(P+1 Khi(P+1
(b) P+1) { )

Figure 1: For a full upwind DG discretization with P = 2: (a) real (left) and imaginary (right) parts of the modified wavenumbers k;,, vs. the baseline
wavenumber k and (b) real (left) and imaginary (right) parts of an eigenmatrix’s entries V' ,, vs. the baseline wavenumber k.

The proposed interpretation is illustrated in Fig. 2(b), where we observe the approximation of u(x, 0) = cos(rx) using
a P = 2 discretization with 8 equispaced elements in the interval 0 < x < 4. The discrete approximation to the cosine
function is decomposed into three numerical modes (ev;, ev; and evs) such that, from Eq. (25),

evn(x,0) = Ay, explikx,) op(€), form=1,2,3, (28)

where the values of A,, are indicated by the scale of the vertical axis of each numerical eigenmode in Fig. 2(b). The
initial projection of cos(nmx) leads to a primary contribution from ev; which corresponds to the primary mode and
captures most of the cosine function. However, the two other numerical eigenmodes (ev, and evs) also contribute to
the optimal approximation.

The DG scheme then propagates each of the discrete eigenmodes according to their own (apparent) wavenumbers
as highlighted by the dotted lines between plots (a) and (b) in Fig. 2. These secondary modes represent “intrusive”
wavenumbers that were not present in the initial condition, but that should not be considered unphysical or spurious
as they are indeed improving the numerical approximation. We show below that secondary eigenmodes can work
together via superposition to accurately propagate the initial projection. However, as they propagate forwards in time,
the numerical diffusion also acts on the secondary modes.

In Fig. 2(c) the considered test case is shown at t = 1/2, after being advected a distance of one mesh element with
a unit velocity. The solution still consists of three eigenmodes, but with reduced amplitudes since they were subjected
to different amounts of dissipation during the propagation. The primary mode ev; has its eigenvalue within the linear
regions of dispersion/diffusion curves and thus propagates without significant diffusion. Mode ev, has the smallest
diffusion of the two secondary modes and so maintains some of its original shape, whereas ev; has a large numerical
dissipation and by # = 1/2 has already decayed to a negligible amplitude.
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Figure 2: Understanding the primary and secondary eigenmodes. (a) For a fixed value of ki/(P + 1) = n/6 ~ 0.52 we obtain three eigenvalues.
Two secondary eigenvalues can be considered as replicas of the primary eigenvalue separated by 27/(P + 1) = 27/3. (b) A cosine wave initial
condition is perceived through a Galerkin projection as a primary mode ev; and two secondary modes evz, ev3. (c) All three eigenmodes contribute
to the numerical advection of the initial condition but decay at different rates as defined by the imaginary part of their respective eigenvalues.

Fig. 3 illustrates the distribution of secondary modes when a higher value of P is considered. This figure represents
an example with P = § again for k = /6 ~ 0.52. One can see that each secondary mode acts as the primary mode at
a different k. As in Fig. 2(a), the eigenvalues shown as circles are associated with values of k separated of 27/(P + 1)
from each other. The primary eigenvalue, i.e. the one directly related to the baseline wavenumber k, is shown as a
solid circle. It is also worth noting that the primary solution mode is not necessarily the one subjected to the lowest
dispersion/diffusion errors.

To further understand the role of the secondary modes we can consider the following analysis. Let W be the set of
values of m whose associated modes (or whose apparent wavenumbers) lie on the linear regions of dispersion/diffusion
curves. More precisely, for m € W, the relations

ki =k +2rg,,/(P + 1) or ki\h = kh + 2rq,, (29)

are very good approximations, for some g, € Z. A larger portion of the eigenmodes will follow the relations above as
P increases, see Fig. 3 for example. These modes (m € W) clearly represent the well-resolved part of the numerical
solution.



Numerical Dispersion, P = 8 Numerical Diffusion, P = 8

Real (k* h) /(P +1)
Imag (k* h)/ (P +1)

0 3 2 -1 0 1 2 3
Khi(P+1) kh/(P+1)

Figure 3: Real (left) and imaginary (right) parts of the numerical eigenvalues for all solution modes, shown along the primary mode’s eigencurve,
for a full upwind DG discretization with P = 8 and k = 7/6 ~ 0.52.

We now show that the well-resolved part of the solution within €, at time ¢ will match the well-resolved part of
the solution within Q. at time ¢ + 7, where 7, = h/a. From Eqs. (24-26), one has that the well-resolved part of the
solution, ", is given by

MX](f, r+ Th) = Z Am O-m(é:) eXP[i(ker - Wm[)] CXP(_inTh) > (30)
meW

and since wy, = ak,, and 1), = h/a, one has through Eq. (29) that
exp(—iw,,Tp) = exp(—ik,,h) = exp(—ikh) exp(-2niq,,) = exp(—ikh) , 31
provided that g,, € Z, and therefore

W E+T) = D Ay (@) explithe. — wat)] exp(—ikh) = ul/ (£,1), (32)
meW

since by definition x,,; — x, = h.

We conclude that the numerical eigenmodes related to well-resolved wavenumbers, i.e. those within the linear
regions of dispersion/diffusion curves, will propagate correctly the components of the numerical solution associated
to their wavenumbers. In this sense, all these modes can be considered of physical character. The remaining numerical
eigenmodes will be detrimental to the solution accuracy as they introduce significant dispersion and diffusion errors.
However, once the apparent wavenumbers remain equispaced along the primary mode’s eigencurve as P increases,
a larger portion of the numerical modes will contribute to the overall accuracy of the formulation for higher order
discretizations, since the (linear) regions of negligible numerical error become larger for higher values of P.

3.3. Effective resolution according to the “1% rule”

All the information regarding dispersion and diffusion characteristics of a DG simulation (of linear advection) is
contained in the eigencurves of the primary mode. Therefore, one can anticipate using these eigencurves to quantify
the effective resolution that a given hp setting can provide. Here, this resolution is measured in terms of the largest
wavenumber that can be accurately resolved to within a tolerance of 1%. We acknowledge that points per wavelength
estimates have already been obtained for DG (e.g. [28]), but a more physical interpretation is here explored for our
adopted error tolerance.

As shown in Sec. 3.2, the range of wavenumbers for which wave propagation can be considered accurate corre-
sponds to the linear regions of dispersion/diffusion curves. And since diffusion errors have been verified to be more
significant than dispersion errors [23, 27], we now focus on defining the extent of the plateau region of diffusion
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curves. To that end, it is useful to consider the physical meaning of the imaginary part of k* = k*h/(P + 1). When
expressing the modified wavenumber in the form k* = ky + ik}, a propagating wave can be represented as

u oc explitkx —w't)] = exp(ak;t) expli(kx — akyt)] , (33)
where the relation w* = ak™ has been used, so that regarding the wave’s amplitude one has

lul o exp(akj) = exp(k;t/At), (34)

in which Az = h/a and i = h/(P + 1). Since  is the length measure of one degree of freedom in an /p setting, At is
the time it takes for a signal to cross a single DOF. Hence, according to Eq. (34), for each At = At, the magnitude of
the propagating wave is multiplied by exp(k_;), which can then be regarded as a damping factor per DOF'.

In particular, for a damping factor of 99%, the value of E would be In(0.99) =~ —0.01. As we shall subsequently
demonstrate, this value appears to be a good choice to define the border of the plateau region for each polynomial
order. The “1% rule” then consists in relying on the wavenumber k = k;q, for which exp(E) = 0.99 to differentiate
between regions of negligible (k < k;q4,) and significant (k > k;4 ) dissipation.

Numerical Dispersion Numerical Diffusion
5
0
—P=1
45 —P=2 / \
——P=3 / \ Ak
4 P=4
——P=5 -2F
~35 P=6 —_
T —P= | = P increasing
o 3 — E - ; 4 it (fixed DOFs)
£ o / =4
7 b
s 2+ 5
4 £
T 150 =
1r P increasing

(fixed DOFs)

2 25 3

1.5 2 25 3 ki 1.5
kh/(P+1) kh/(P+1)

o] 0.5 1

Figure 4: Dispersion (left) and diffusion (right) eigencurves of the full upwind DG formulation for increasing polynomial order P. Note that only
positive wavenumbers are shown. The dotted lines represent the exact linear advection behaviour.

Fig. 4 shows the variation of dispersion and diffusion characteristics with the polynomial order P for the full
upwind DG scheme. Particularly, the plateau region in the diffusion curves becomes larger for increasing orders.
Given P, it is possible to determine the largest value of ky9 within the plateau region through the 1% rule. Then,
given &, one can obtain the corresponding value of k;¢,. Fig. 4 also shows that the dissipation affecting wavenumbers
outside the plateau region increases with P. A summary of the relevant quantities obtained from the diffusion curves
is provided in Table 1 for P = 1,...,8.

Table 1: Relevant diffusion-based quantities of full upwind DG for increasing P

P Iklie  Ikhli,  DOFpW  (kp)x  exp(k))x

1 05635 1.127 11.15 -3.00 4.98x1072
2 0.8721 2.616 7.20 -3.95  1.93x1072
3 1.0825 4.330 5.80 -479  8.31x107
4 12327 6.164 5.10 -5.57 3.81x1073
5 1.3451 8.071 4.67 -6.32  1.80x1073
6 1.4324 10.027 4.39 -7.01  9.03x107*
7 15022 12.018 4.18 -7.60  5.00x107*
& 1.5594 14.035 4.03 -8.34  2.39x107*
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The second and third columns in Table 1 show the values of I%I/% and |kh|;4,, respectively, that can be achieved
within an Ap setting with full upwind DG. Through these values, one can also estimate the coarsest mesh spacing that
can be used in order to resolve scales up to a given wavenumber. The fourth column contains the associated number of
degrees of freedom per wavelength, DOFpW = 27/k;q,. This column shows that the DG discretization becomes more
efficient per degree of freedom as the polynomial order is increased. In fact, spectral-like resolution [30] is approached
for increasing P on a per degree of freedom basis, as shown in Fig. 4.

Finally, the last two columns in Table 1 show respectively the values of k_l* at k = 7 and the associated damping
factors per DOF, exp(E),,. These quantities represent the amount of dissipation affecting the smallest captured scales
and can be seen to become stronger for increasing P. For P = 2, where exp(k_l*),, ~ 2 x 1072, the smallest scales would
propagate more than two DOFs to suffer the same damping provided for a single DOF by the P = 7 discretization,
in which exp(E),r ~ 5x107*. This is probably an extra advantage of employing higher order discretizations, since
as previously recognised a faster damping of the poorly-resolved scales further precludes them from polluting the
numerical solution.

4. Experiments in Burgers turbulence

In order to assess the methodology proposed in Sec. 3.3 for non-linear problems, the forced Burgers turbulence
[31] problem was considered. Our forcing approach follows that of [32], where a white-in-time random force F(x, f)
is employed with Fourier components

A oy(1)
Varvk

where k stands for the wavenumber, A is an amplitude constant, o is a standard Gaussian random function (white-
in-time), while Ar and L are the time step and the length of the domain used in the simulation. This particular type of
forcing has been adopted in previous studies [33, 34] because it yields a —5/3 slope for the inertial range of the energy
spectrum and is therefore more representative of Navier-Stokes turbulence. In what follows, this forcing approach is
applied to the inviscid Burgers equation.

The forcing cut-off wavenumber k. is normally chosen to be inside the dissipation range, but here we restrict the
effect of the forcing term to the inertial range so that it would not counteract the diffusion provided by the DG scheme
on the (numerically induced) dissipation range. We note however that once the statistically steady state is achieved, the
energy transfer throughout the cascade mechanism is defined by the larger (forced) scales and thus remains constant
across the unforced inertial range. The considered Burgers equation with added forcing takes the form

2
Fif) = for k = ? and neZ, (35)

ou 10> A t 27N
u Low A ff~<>exp(-”_x), (36)
ot 20x At N VINT L
where Np = {£1, ..., +N.} and the cut-off wavenumber is k. = 27N_./L, i.e. F; = 0 if k > k.. The Gaussian variable
oy is generated from a standard distribution (zero mean and unit variance) for each wavenumber at each new time

step.

The full upwind DG scheme was used for the simulations and exact integrations were employed to avoid aliasing
errors. For the non-linear term, Gauss-Legendre quadratures were used with the required number of nodes to ensure
exact integration. For the forcing term, Galerkin projections of the Fourier components were carried analytically
through the relations given in Egs. (15-17). These projections were however numerically stripped from the secondary
modes originating from each single Fourier component by means of a ‘filtering’ procedure based on the system of
eigenmodes discussed in Sec. 3.1. A detailed description of this procedure is provided in the Appendix.

The test cases addressed here are summarized in Table 2, where letters (a, b, c) refer to the total number of DOFs
while numbers (1,...,7) refer to the polynomial order employed in each case. The number of mesh elements can be
evaluated as Ngor/(P + 1). For all the cases, Eq. (36) was solved within Q = [-1, 1] (and so L = 2) with periodic
boundary conditions and started from a constant initial condition uy = 1. Time-stepping was carried with an explicit
third-order Runge-Kutta TVD algorithm [35] with At = 4 x 107 in all test cases, yielding CFL =~ 0.1 for the stiffest
case (c7).
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Table 2: Summary of test cases (and their shorthand acronyms)

Nof\P 1 2 3 4 5 6 7

1024 al a2 a3 a4 a5 a6 al
2048 bl b2 b3 b4 b5 b6 b7
4096 cl 2 3 ¢4 ¢S5 6 7

The forcing amplitude constant was set to Ay = 1/2 for all test cases. Time integrations were performed over the
interval 0 < ¢ < 600. A snapshot of the solution at # = 600 for the case ¢7 is shown in Fig. 5 along with the history of
the space-averaged fluctuation u/,, (¢). For all test cases addressed, a statistical steady state with an ensemble average

rms

of <u,,,.> = 0.03 is reached after approximately ¢ = 50. The turnover time of the largest eddies can be estimated as
79 = L/u,,,, = 67.
T T T T 0.05 T
1.08f
0.045F
1.061
0.04
Toar 1 0.035|
1.02 1 0.03
Z 4 . Zoo2st
)
0.98F - 0.021
0.961 0.015+
004t 0.01F
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0.92+
0
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’
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Figure 5: Solution snapshot at # = 600 (left) and space-averaged fluctuation u,,  (¢) history (right), for the test case c7.

The time-averaged energy spectrum ES (k) representing the distribution of turbulent kinetic energy in wavenumber
space is given in Fig. 6 again for the case ¢7. This spectrum corresponds to the average of two hundred spectra obtained
from successive applications of Taylor’s hypothesis [36, 37] over the interval 200 < ¢ < 600. Each of these spectra
was evaluated by probing of the solution at x = 0 over time windows of 6f = L/uy = 2. We remark that uy = 1 remains
the average of u within Q for all times since neither the forcing nor the non-linear dynamics of the Burgers equation
affect the average value (component k = 0) of the solution.

For all cases addressed, the forcing in Eq. (36) was implemented with N, = 80. As a result, the energy spectrum
shown in Fig. 6 features the —5/3 =~ —1.7 slope up to log,y(k.) = log,,(nN.) ~ 2.4, as expected of the forcing
strategy adopted. After that, a slope of —2, typical of unforced Burgers turbulence [31], takes place until numerical
diffusion is seen to affect the spectrum. The effective hp resolution estimated by the 1% rule for this case is shown
as a vertical line in Fig. 6. The estimate accurately pinpoints the beginning of the dissipation range. Another effect
of the numerical errors is seen in the form of a hump on the energy spectrum near the wavenumber given by the 1%
rule (k;4). This hump becomes more noticeable and concentrated for higher values of P, and is possibly connected to
dispersion errors, as discussed later. The accuracy of the 1% rule’s estimates is very good for all the cases addressed
and are even better for the higher orders, where the impact of numerical errors is more localized (in wavenumber
space).

The effect of mesh refinement is shown in Fig. 7, where the energy spectra of cases a4, b4 and c4 are depicted.
Once again, the vertical lines mark the values of k;q, obtained from the 1% rule and these match quite well the
beginning of the dissipation range for each test case. Fig. 7 also helps to clarify why the DG formulation can be
suitable for under-resolved simulations of turbulence: the numerical discretization is capable of resolving scales up
to kjq, with good accuracy while dissipation is provided at the end of the energy spectrum in the form of numerical
diffusion. In this sense, the DG-uDNS approach seems closer to hyper-viscosity approaches than to LES approaches
based on (explicit or implicit) subgrid-scale modelling.

In the application of the 1% rule, although |kh|;4, varies with P (Table 1), the resolution gain (in log scale) obtained
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Figure 6: Time-averaged energy spectrum for the test case ¢7, featuring slopes of —5/3 and -2 respectively on the forced and unforced regions of
the inertial range, as well as a numerical dissipation region taking place as predicted by the 1% rule (vertical line).

with a given mesh refinement factor f = i/h’ does not depend on P. This is because, for each P,

k)~ oathye) = oM7) < tog M%) < g = et a7
In the test cases considered here, where a mesh refinement factor of f = 2 separates cases a-b or b-c for each value of
P, the expected resolution gain is given by log,,(2) = 0.3 which is also visible in Fig. 7.

On the other hand, the actual value of k;¢, is strongly dependent on P. The effect of increasing P is considered in
Fig. 8, where compensated spectra (for the unforced inertial range) are shown for cases c1, c2, ..., ¢7. The horizontal
lines correspond exactly to the same value of —2.23, which was defined so as to fit the compensated unforced inertial
range of test case ¢7. This value is taken as a reference for all the inertial ranges shown in Fig. 8. The estimates for
the beginning of the dissipation range obtained from the 1% rule are again depicted as vertical lines at the right end
of each horizontal line. The energy spectra in question correspond to a fixed number of DOFs and, as P increases in
Fig. 8, mesh spacing therefore becomes coarser. The vertical lines corresponding to the 1% rule highlight that, for a
given number of DOFs, employing higher-order discretizations along with coarser meshes yields superior resolution
but, as predicted in Table 1, the gain in resolution obtained by increasing P (with fixed DOFs) is not very significant
when the polynomial order is already very large (say, P > 5).

Another feature seen in Fig. 8 are the humps on each energy spectrum near their respective values of k;g, which
become more concentrated (taller and narrower) as P increases. An explanation for the origin of the humps was first
suggested as follows. From the dispersion eigencurves in Fig. 4, one can differentiate two portions of wavenumbers
within the poorly-resolved region (between k9 and 7). The first portion has wavenumbers which propagate faster than
they should, while the second portion contains wavenumbers propagating slower than they should (when compared to
the exact behaviour). The intersection of line k* = k with the dispersion eigencurves (after their maxima) separates
these two portions. Since the considered energy spectra were obtained through the application of Taylor’s hypothesis,
the energy of the first/second portion could have been attributed to wavenumbers much bigger/smaller than k;q,. As
a result, dispersion errors related to the first/second portion would be responsible for an accumulation of energy af-
ter/before k;q,. Further, as the poorly-resolved region becomes narrower and subjected to a stronger dissipation with
increasing P, so the associated hump would become more concentrated. Case P = 1 is peculiar because dispersion er-
rors are only significant for the second wavenumbers’ portion, by which energy should accumulate almost exclusively
before k;4,. This is indeed observed in Fig. 8, where the energy spectrum of test case c1 is seen to have an excess of
energy along the whole (unforced) inertial range.

Although plausible and consistent with the energy spectra obtained, the interpretation provided above is not con-
clusive in demonstrating that the observed humps are just an artefact from Taylor’s hypothesis. To further investigate
the issue, some energy spectra were evaluated directly in space (at a given time) through a discrete Fourier transform
based on equispaced points, however avoiding element interfaces. These energy spectra (not shown) were found to
be highly oscillatory at the poorly-resolved scales (k > k;q4), yet humps similar to those shown in Fig. 8 could clearly
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be distinguished in the vicinity of k;¢. This highly oscillatory behaviour is believed to be associated with the strong
interface discontinuities induced by the shocks which are peculiar to Burgers turbulence. Such results seem to indicate
that these humps are not an artefact from Taylor’s hypothesis as induced by dispersion errors. Additional investigation
is however required to better understand their primary cause.

In any event, the 1% rule proved to be, even in a non-linear setting, reliable in predicting the wavenumber k¢,
where numerical errors become significant and after which a numerically induced dissipation range takes place. It
provides guidelines for designing an #p approximation space thus clarifying how the DG formulation can be better
used for under-resolved turbulence simulations. In particular, the use of higher-order discretizations along with coarser
meshes is expected to be the most efficient way to translate available resources into resolution power. A comparison
between test cases al and a7, which have the same number of DOFs, is shown in Fig. 9 for r = 600. The case with a
(7+ 1)/(1 + 1) = 4 times coarser mesh but P = 7 can capture a much broader range of small structures. This feature
has also been recognized in previous works [17, 18]. We stress that P-type refinement has long been recognized as
more efficient than A-type refinement [4, 25] owing to the exponential (also called spectral) convergence property, but
this only holds for well-resolved simulations, where all the wavenumbers captured are well within the linear regions
of dispersion and diffusion curves, see [27]. Here we highlight the advantages of favouring P over /4 in under-resolved
turbulence simulations.
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Figure 9: Comparison between solution snapshots at # = 600 for test cases al (left) and a7 (right). Though having the same number of DOFs, the
higher-order simulation is able to capture a much broader range of small structures.

The comparison in Fig. 9 is appropriate because the random number generator employed for the forcing variable
o (?) is deterministic and therefore the same forcing function was used in both test cases through the whole integration
period. We note however that the computational cost of spectral/zp methods in terms of floating point operations
clearly does not linearly scale with DOFs. Nevertheless, on emerging hardware, large scale computations required for
turbulence simulations at high Reynolds number are becoming more communication bandwidth-limited than floating
point operation-limited and therefore the total number of DOFs is becoming a more relevant measure of performance.

5. Concluding remarks

A linear dispersion-diffusion analysis was employed to provide direct guidelines for the selection of spatial res-
olution in simulation of turbulence through the under-resolved DNS (uDNS) approach via high-order discontinuous
Galerkin (DG) spectral/hAp methods. The role of secondary numerical modes, peculiar to spectral/Ap methods, was
discussed and clarified. It was shown that the secondary modes replicate the behaviour of the primary ones so that
essentially all of DG’s propagation properties (for linear advection) are given in the dispersion/diffusion eigencurves
of the primary modes. From these curves, numerical errors were assessed (diffusion in particular) and their effect on
poorly-resolved scales was quantified. A simple criterion named “1% rule” was then proposed to estimate the effective
resolution provided by an hp setting in terms of the largest wavenumber k;q, that can be accurately resolved by the
approximation space.

Though strictly valid for linear advection, the 1% rule was tested against Burgers turbulence and found to predict
quite accurately the beginning of the (numerically induced) dissipation range on the energy spectra of under-resolved
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simulations. The results shed some light on why the DG formulation might be able to provide good results for uDNS
without sub-grid scale models. Essentially, the numerical discretization is capable of resolving scales up to k;¢ with
high accuracy while providing dissipation at the end of the energy spectrum in the form of numerical diffusion. In this
sense, the DG-uDNS approach seems closer to hyper-viscosity approaches than to LES (or iLES) approaches based
on explicit (or implicit) SGS modelling. In addition, the 1% rule can provide useful guidelines on how to better use
DG for uDNS. In particular it was shown that, given a limited number of degrees of freedom, the use of higher-order
polynomials along with coarser meshes is the best way to translated available resources into resolution power. The
advantages of this strategy (as compared to mesh refinement) were first pointed out in [18], but on a more qualitative
basis.

We stress that the 1% rule is not expected to be directly applicable (in its present form) to all kinds of turbulence
problems, including Navier-Stokes turbulence. And it does not indicate whether DG-based under-resolved simulations
might diverge numerically due to insufficient resolution. Nevertheless, should the proposed methodology (with due
adaptations) be valid for real turbulent flows, the concept of effective resolution (embodied in k;4) would play in
the uDNS context the role played by the filter width in classic LES. While an SGS model in LES (ideally) begins
to act on scales smaller than the filter width, in uDNS a strong numerical dissipation provides a sink for the energy
cascade at wavenumbers greater than k;q,. For the discretization of the Navier-Stokes equations in three dimensions,
the smallest captured scales should be affected, amongst other factors, by the numerical (inviscid and viscous) fluxes
employed, the mesh topology and type of elements used. Subsequent studies on the applicability of the 1% rule for
real three-dimensional turbulent flows are planned for the near future.
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Appendix

This section is devoted to the description of how the source term in Eq. (36) was taken into account in the dis-
cretization of the forced Burgers turbulence problem considered in Sec. 4.
We start with Eq. (36) written in the form

ou Jdf
—+ 2 =5, 38
o " ox 8
where f = u?/2 and the source term is given by
Ar on(1) .
= exp (iknx) , 39)
VAt ,\%ﬁ IN|

in which ky = 27N/L. The reader is referred to Sec. 4 for the definition of the remaining variables.
After the customary steps, recall Sec. 2, the semi-discrete equation for the evolution of the element-wise coeffi-
cients of (), can be found, namely

h@cj

T fg e = Foplar + FoDlar + 5 fg S ez, (40)

where QF and QF denote the left and right boundaries of element Q,, respectively, and f is the (full upwind) numerical
flux evaluated at the respective interfaces. Unpacking the last integral above leads to the term

L exp [iky (xc + &Eh/2)] ¢;(6) dé = eXp(ikNxe)L exp (tkyhé/[2) ¢(§) d§ = exp (iky x) aj(kyh) , (41)

where x, denotes the centre of , and «; is given analytically in Egs. (15-17).
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In vector form, Eq. (40) is given by

hoc -, N . h
53 = f f#dé = FPllar + FPlar + 5 S, 42)
20t Q, 2
in which ¢ = {co, ..., cp}! and
A on(t) .
Se=—= N2 exp ik x,) @k ) 43)
VAl NZN:F VIN]
where @ = {ay, ..., ap)". Asdiscussed in Sec. 3.1, the projection of each single Fourier mode is expected to energize

several (P + 1) numerical modes with only one of them corresponding to the actual (baseline) wavenumber of the
underlying Fourier component. To avoid this, we replace S, by s p in Eq. (42), where (5 can be regarded as a filtered

version of @ which energizes only the primary eigenmode originating from each Fourier component of the forcing
term.
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Figure 10: Comparison between unfolded energy spectra of simulations carried without (left) and with (right) filtering, exemplified for P = 5 (top)
and P = 6 (bottom). The highlighted wavenumbers near k = 0 correspond to the positive Fourier components of the forcing term. The remaining
highlighted wavenumbers are their respective secondary components which can be avoided through the proposed filtering.

From Egs. (21-23), the amplitude A,, of a numerical eigenmode energized by a given Fourier component can be
obtained from the projection array @ of such Fourier mode through the relation A=vV'a@ where 4 = {Ao, ..., Ap)T
and V = {¥,...,Vp} is the matrix whose columns are the eigenvectors related to the projection operator as defined
in Eqgs. (19-20). Let M be the index of the primary eigenmode according to the sorting adopted for the entries of A.
We seekﬁsuch that B = V"'ﬁ with B = {0,...,0,A,,0,...,0}7, which can be expressed as B= Fu A’, where ¥y,
is employed to filter out from A all the secondary eigenmodes and retain only the primary one (of index M). Hence,
(Fm)i,j = 0i.m Ou,j in which 6; j is the Kronecker delta. The resulting expression for [f is

B=VB=VFuA=vVFy,Vv'a. (44)
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We note that index M can be identified from the one-to-one correspondence between eigenvalues and eigenvectors in
Eqgs. (19-20), since a primary eigenvalue can be more easily distinguished from the secondary ones when compared
along dispersion-diffusion curves.

To illustrate the proposed filtering technique, we consider two test cases for P = 5 and P = 6, with and without
filtering. Simulations carried without filtering led to early numerical divergence, especially for the highest polynomial
orders. To obtain some results before divergence, simulations were integrated in time until # = 1 and compared. The
energy spectra evaluated through a discrete Fourier transform (in space) are given in Fig. 10. Note that “unfolded”
energy spectra are considered in Fig. 10, where positive and negative wavenumbers are distinguished. Symmetrical
plots are obtained due to the conjugate symmetry of the forcing term, which is required to guarantee a real solution
at all times. The highlighted wavenumbers near k = 0 correspond to the positive Fourier components of the forcing
term. The remaining highlighted wavenumbers are their respective secondary components (recall Fig. 3) which can
be avoided through the proposed filtering. If these secondary components are not avoided, they will grow in time and
eventually lead to numerical divergence. Note that non-linear interactions rapidly energize wavenumbers in between
the highlighted ranges.
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