6 research outputs found

    Распределение значений локальной кривизны как структурный признак для off-line верификации рукописной подписи

    Get PDF
    In the paper, a new feature for describing a digital image of a handwritten signature based on the frequency distribution of the values of the local curvature of the signature contours, is proposed. The calculation of this feature on the binary image of a signature is described in detail. A normalized histogram of distributions of local curvature values for 40 bins is formed. The frequency values recorded as a 40-dimensional vector are called the local curvature code of the signature.During verification, the proximity of signature pairs is determined by correlation between curvature codes and LBP codes described by the authors in [23]. To perform the signature verification procedure, a two-dimensional feature space is constructed containing images of the proximity of signature pairs. When verifying a signature with N authentic signatures of the same person, N(N-1)/2 patterns of the proximity of pairs of genuine signatures and N images of pairs of proximity of the analyzed signature with genuine signatures are presented in the feature space. The Support Vector Machine (SVM) is used as a classifier.Experimental studies were carried out on digitized images of genuine and fake signatures from two databases. The accuracy of automatic verification of signatures on the publicly available CEDAR database was 99,77 % and on TUIT was 88,62 %.В работе предложен новый признак описания цифрового изображения рукописной подписи на базе частотного распределения значений локальной кривизны контуров этой подписи. Подробно описывается вычисление этого признака на бинарном изображении подписи. Формируется нормализованная гистограмма распределений значений локальной кривизны для 40 интервалов. Частотные значения, записанные в виде 40-мерного вектора, названы кодом локальной кривизны подписи.При верификации близость двух подписей определяется корреляцией между кодами кривизны и LBP-кодами, описанными авторами в работе [23]. Для выполнения процедуры верификации подписи строится двумерное признаковое пространство, содержащее образы корреляционной близости пар подписей. При верификации подписи с N подлинными подписями этого же человека в признаковом пространстве представлено N(N-1)/2 образов близости пар подлинных подписей и N образов пар близости анализируемой подписи с подлинными. В качестве классификатора используется машина опорных векторов (SVM).Экспериментальные исследования выполнены на оцифрованных изображениях подлинных и фальшивых подписей из двух баз. Точность автоматической верификации подписей на общедоступной базе CEDAR составила 99,77 %, а на базе TUIT 88,62 %

    Распределение значений локальной кривизны как структурный признак для off-line верификации рукописной подписи

    Get PDF
    В работе предложен новый признак описания цифрового изображения рукописной подписи на базе частотного распределения значений локальной кривизны контуров этой подписи. Подробно описывается вычисление этого признака на бинарном изображении подписи. Формируется нормализованная гистограмма распределений значений локальной кривизны для 40 интервалов. Частотные значения, записанные в виде 40-мерного вектора, названы кодом локальной кривизны подписи. При верификации близость двух подписей определяется корреляцией между кодами кривизны и LBP-кодами, описанными авторами в работе [23]. Для выполнения процедуры верификации подписи строится двумерное признаковое пространство, содержащее образы корреляционной близости пар подписей. При верификации подписи с N подлинными подписями этого же человека в признаковом пространстве представлено N(N-1)/2 образов близости пар подлинных подписей и N образов пар близости анализируемой подписи с подлинными. В качестве классификатора используется машина опорных векторов (SVM). Экспериментальные исследования выполнены на оцифрованных изображениях подлинных и фальшивых подписей из двух баз. Точность автоматической верификации подписей на общедоступной базе CEDAR составила 99,77 %, а на базе TUIT 88,62 %

    RCDN -- Robust X-Corner Detection Algorithm based on Advanced CNN Model

    Full text link
    Accurate detection and localization of X-corner on both planar and non-planar patterns is a core step in robotics and machine vision. However, previous works could not make a good balance between accuracy and robustness, which are both crucial criteria to evaluate the detectors performance. To address this problem, in this paper we present a novel detection algorithm which can maintain high sub-pixel precision on inputs under multiple interference, such as lens distortion, extreme poses and noise. The whole algorithm, adopting a coarse-to-fine strategy, contains a X-corner detection network and three post-processing techniques to distinguish the correct corner candidates, as well as a mixed sub-pixel refinement technique and an improved region growth strategy to recover the checkerboard pattern partially visible or occluded automatically. Evaluations on real and synthetic images indicate that the presented algorithm has the higher detection rate, sub-pixel accuracy and robustness than other commonly used methods. Finally, experiments of camera calibration and pose estimation verify it can also get smaller re-projection error in quantitative comparisons to the state-of-the-art.Comment: 15 pages, 8 figures and 4 tables. Unpublished further research and experiments of Checkerboard corner detection network CCDN (arXiv:2302.05097) and application exploration for robust camera calibration (https://ieeexplore.ieee.org/abstract/document/9428389

    Image Feature Information Extraction for Interest Point Detection: A Comprehensive Review

    Full text link
    Interest point detection is one of the most fundamental and critical problems in computer vision and image processing. In this paper, we carry out a comprehensive review on image feature information (IFI) extraction techniques for interest point detection. To systematically introduce how the existing interest point detection methods extract IFI from an input image, we propose a taxonomy of the IFI extraction techniques for interest point detection. According to this taxonomy, we discuss different types of IFI extraction techniques for interest point detection. Furthermore, we identify the main unresolved issues related to the existing IFI extraction techniques for interest point detection and any interest point detection methods that have not been discussed before. The existing popular datasets and evaluation standards are provided and the performances for eighteen state-of-the-art approaches are evaluated and discussed. Moreover, future research directions on IFI extraction techniques for interest point detection are elaborated

    Discrete Curvature Representations for Noise Robust Image Corner Detection

    Get PDF
    Image corner detection is very important in the fields of image analysis and computer vision. Curvature calculation techniques are used in many contour-based corner detectors. We identify that existing calculation of curvature is sensitive to local variation and noise in the discrete domain and does not perform well when corners are closely located. In this paper, discrete curvature representations of single and double corner models are investigated and obtained. A number of model properties have been discovered which help us detect corners on contours. It is shown that the proposed method has a high corner resolution (the ability to accurately detect neighbouring corners) and a corresponding corner resolution constant is also derived. Meanwhile, this method is less sensitive to any local variations and noise on the contour; and false corner detection is less likely to occur. The proposed detector is compared with seven state-of-the-art detectors. Three test images with ground truths are used to assess the detection capability and localization accuracy of these methods in noise-free and cases with different noise levels. Twenty-four images with various scenes without ground truths are used to evaluate their repeatability under affine transformation, JPEG compression, and noise degradations. The experimental results show that our proposed detector attains a better overall performance

    Discrete Curvature Representations for Noise Robust Image Corner Detection

    No full text
    corecore