4,687 research outputs found

    A measure of non-convexity in the plane and the Minkowski sum

    Full text link
    In this paper a measure of non-convexity for a simple polygonal region in the plane is introduced. It is proved that for "not far from convex" regions this measure does not decrease under the Minkowski sum operation, and guarantees that the Minkowski sum has no "holes".Comment: 5 figures; Discrete and Computational Geometry, 201

    Path Puzzles: Discrete Tomography with a Path Constraint is Hard

    Full text link
    We prove that path puzzles with complete row and column information--or equivalently, 2D orthogonal discrete tomography with Hamiltonicity constraint--are strongly NP-complete, ASP-complete, and #P-complete. Along the way, we newly establish ASP-completeness and #P-completeness for 3-Dimensional Matching and Numerical 3-Dimensional Matching.Comment: 16 pages, 8 figures. Revised proof of Theorem 2.4. 2-page abstract appeared in Abstracts from the 20th Japan Conference on Discrete and Computational Geometry, Graphs, and Games (JCDCGGG 2017

    Enumerating Foldings and Unfoldings between Polygons and Polytopes

    Get PDF
    We pose and answer several questions concerning the number of ways to fold a polygon to a polytope, and how many polytopes can be obtained from one polygon; and the analogous questions for unfolding polytopes to polygons. Our answers are, roughly: exponentially many, or nondenumerably infinite.Comment: 12 pages; 10 figures; 10 references. Revision of version in Proceedings of the Japan Conference on Discrete and Computational Geometry, Tokyo, Nov. 2000, pp. 9-12. See also cs.CG/000701

    On the structure of Ammann A2 tilings

    Full text link
    We establish a structure theorem for the family of Ammann A2 tilings of the plane. Using that theorem we show that every Ammann A2 tiling is self-similar in the sense of [B. Solomyak, Nonperiodicity implies unique composition for self-similar translationally finite tilings, Discrete and Computational Geometry 20 (1998) 265-279]. By the same techniques we show that Ammann A2 tilings are not robust in the sense of [B. Durand, A. Romashchenko, A. Shen. Fixed-point tile sets and their applications, Journal of Computer and System Sciences, 78:3 (2012) 731--764]

    Uniform Brackets, Containers, and Combinatorial Macbeath Regions

    Get PDF
    We study the connections between three seemingly different combinatorial structures - uniform brackets in statistics and probability theory, containers in online and distributed learning theory, and combinatorial Macbeath regions, or Mnets in discrete and computational geometry. We show that these three concepts are manifestations of a single combinatorial property that can be expressed under a unified framework along the lines of Vapnik-Chervonenkis type theory for uniform convergence. These new connections help us to bring tools from discrete and computational geometry to prove improved bounds for these objects. Our improved bounds help to get an optimal algorithm for distributed learning of halfspaces, an improved algorithm for the distributed convex set disjointness problem, and improved regret bounds for online algorithms against ?-smoothed adversary for a large class of semi-algebraic threshold functions

    In pursuit of linear complexity in discrete and computational geometry

    Get PDF
    Many computational problems arise naturally from geometric data. In this thesis, we consider three such problems: (i) distance optimization problems over point sets, (ii) computing contour trees over simplicial meshes, and (iii) bounding the expected complexity of weighted Voronoi diagrams. While these topics are broad, here the focus is on identifying structure which implies linear (or near linear) algorithmic and descriptive complexity. The first topic we consider is in geometric optimization. More specifically, we define a large class of distance problems, for which we provide linear time exact or approximate solutions. Roughly speaking, the class of problems facilitate either clustering together close points (i.e. netting) or throwing out outliers (i.e pruning), allowing for successively smaller summaries of the relevant information in the input. A surprising number of classical geometric optimization problems are unified under this framework, including finding the optimal k-center clustering, the kth ranked distance, the kth heaviest edge of the MST, the minimum radius ball enclosing k points, and many others. In several cases we get the first known linear time approximation algorithm for a given problem, where our approximation ratio matches that of previous work. The second topic we investigate is contour trees, a fundamental structure in computational topology. Contour trees give a compact summary of the evolution of level sets on a mesh, and are typically used on massive data sets. Previous algorithms for computing contour trees took Θ(n log n) time and were worst-case optimal. Here we provide an algorithm whose running time lies between Θ(nα(n)) and Θ(n log n), and varies depending on the shape of the tree, where α(n) is the inverse Ackermann function. In particular, this is the first algorithm with O(nα(n)) running time on instances with balanced contour trees. Our algorithmic results are complemented by lower bounds indicating that, up to a factor of α(n), on all instance types our algorithm performs optimally. For the final topic, we consider the descriptive complexity of weighted Voronoi diagrams. Such diagrams have quadratic (or higher) worst-case complexity, however, as was the case for contour trees, here we push beyond worst-case analysis. A new diagram, called the candidate diagram, is introduced, which allows us to bound the complexity of weighted Voronoi diagrams arising from a particular probabilistic input model. Specifically, we assume weights are randomly permuted among fixed Voronoi sites, an assumption which is weaker than the more typical sampled locations assumption. Under this assumption, the expected complexity is shown to be near linear
    • …
    corecore