32,372 research outputs found

    Qualitative System Identification from Imperfect Data

    Full text link
    Experience in the physical sciences suggests that the only realistic means of understanding complex systems is through the use of mathematical models. Typically, this has come to mean the identification of quantitative models expressed as differential equations. Quantitative modelling works best when the structure of the model (i.e., the form of the equations) is known; and the primary concern is one of estimating the values of the parameters in the model. For complex biological systems, the model-structure is rarely known and the modeler has to deal with both model-identification and parameter-estimation. In this paper we are concerned with providing automated assistance to the first of these problems. Specifically, we examine the identification by machine of the structural relationships between experimentally observed variables. These relationship will be expressed in the form of qualitative abstractions of a quantitative model. Such qualitative models may not only provide clues to the precise quantitative model, but also assist in understanding the essence of that model. Our position in this paper is that background knowledge incorporating system modelling principles can be used to constrain effectively the set of good qualitative models. Utilising the model-identification framework provided by Inductive Logic Programming (ILP) we present empirical support for this position using a series of increasingly complex artificial datasets. The results are obtained with qualitative and quantitative data subject to varying amounts of noise and different degrees of sparsity. The results also point to the presence of a set of qualitative states, which we term kernel subsets, that may be necessary for a qualitative model-learner to learn correct models. We demonstrate scalability of the method to biological system modelling by identification of the glycolysis metabolic pathway from data

    Proof-Pattern Recognition and Lemma Discovery in ACL2

    Full text link
    We present a novel technique for combining statistical machine learning for proof-pattern recognition with symbolic methods for lemma discovery. The resulting tool, ACL2(ml), gathers proof statistics and uses statistical pattern-recognition to pre-processes data from libraries, and then suggests auxiliary lemmas in new proofs by analogy with already seen examples. This paper presents the implementation of ACL2(ml) alongside theoretical descriptions of the proof-pattern recognition and lemma discovery methods involved in it

    Historical Aspects of Post-1850 Cosmology

    Full text link
    Cosmology as an exact physical science is of new date, but it has long roots in the past. This essay is concerned with four important themes in the history of cosmological thought which, if taken together, offer a fairly comprehensive account of some of the key developments that have led to the modern understanding of the universe. Apart from the first section, dealing with early views of curved space, it focuses on mainstream cosmology from the expanding universe about 1930 to the emergence of the standard big bang model in the 1960s. This development includes theories we would not today consider "mainstream," such as the steady state model of the universe. The last section outlines what might be called the prehistory of the concept of dark energy, that is, ideas that were discussed before dark energy was actually inferred from supernovae observations in the late 1990s.Comment: 22 pages; Lectures at XVIII Special Courses at Observatorio Nacional, Rio de Janeiro, Brazil, October 2013. AIP Proceedings (in press

    Towards a More Well-Founded Cosmology

    Full text link
    First, this paper broaches the definition of science and the epistemic yield of tenets and approaches: phenomenological (descriptive only), well-founded (solid first principles, conducive to deep understanding), provisional (falsifiable if universal, verifiable if existential), and imaginary (fictitious entities or processes, conducive to empirically unsupported beliefs). The Big-Bang pardigm and the {\Lambda}CDM "concordance model" involve such beliefs: the emanation of the universe out of a non-physical stage, cosmic inflation (invented ad hoc), {\Lambda} (fictitious energy), and exotic dark matter. They fail in the confidence check that is required in empirical science. They also face a problem in delimiting what expands from what does not. In the more well-founded cosmology that emerges, energy is conserved, the universe is persistent (not transient) and the 'perfect cosmological principle' holds. Waves and other perturbations that propagate at c (the escape velocity from the universe) expand exponentially with distance. This dilatation results from gravitation. The cosmic web of galaxies does not expand. Potential {\Phi} varies as -H/(cz) instead of -1/r. Inertial forces arise from gravitational interaction with the rest of the universe (not with space). They are increased where the universe appears blueshifted and decreased more than proportionately at very low accelerations. A cut-off acceleration a0 = 0.168 cH is deduced. This explains the successful description of galaxy rotation curves by MoND. A fully elaborated physical theory is still pending. The recycling of energy via a cosmic ocean filled with photons (the CMB), neutrinos and gravitons, and wider implications for science, are briefly discussed

    Introduction to the Neoclassical Interpretation: Quantum Steampunk

    Get PDF
    In a previous paper we outlined a series of historical touchpoints between classical aether theories and modern theoretical physics which showed a shared conceptual lineage for the modern tools and methods of the most common interpretations and fluid based “Hydrodynamic” treatments of an electromagnetic medium. It was proposed that, though the weight of modern experimentation leaves an extremely narrow and convoluted window for even a reconceptualization of a medium, all of modern physics recognizes a plethora of behaviors and attributes for free space and these physics are interchangeable with modern methods for treating superfluid-like continuums. Thus the mathematical equivalence of the methods do not comprise alternative physics but an alternative interpretation of the same physics. Though many individual components describing a “neo-aether” or “quintessence” are available, an overarching structural outline of how these tools can work together to provide an alternative working overview of modern physics has remained undefined. This paper will propose a set of introductory concepts in the first outline of a toy model which will later connect the alternative tools and conceptualizations with their modern counterparts. This introductory paper provides the simpler “100-miles out” overview of the whole of physics from this perspective, in an easily comprehensible, familiar and intuitive, informal dialog fashion. While this paper grants the largest and loosest introductory overview, subsequent papers in this series will address the finite connections between modern physics and this hydrodynamic view
    corecore