20,911 research outputs found

    Corporate Smart Content Evaluation

    Get PDF
    Nowadays, a wide range of information sources are available due to the evolution of web and collection of data. Plenty of these information are consumable and usable by humans but not understandable and processable by machines. Some data may be directly accessible in web pages or via data feeds, but most of the meaningful existing data is hidden within deep web databases and enterprise information systems. Besides the inability to access a wide range of data, manual processing by humans is effortful, error-prone and not contemporary any more. Semantic web technologies deliver capabilities for machine-readable, exchangeable content and metadata for automatic processing of content. The enrichment of heterogeneous data with background knowledge described in ontologies induces re-usability and supports automatic processing of data. The establishment of “Corporate Smart Content” (CSC) - semantically enriched data with high information content with sufficient benefits in economic areas - is the main focus of this study. We describe three actual research areas in the field of CSC concerning scenarios and datasets applicable for corporate applications, algorithms and research. Aspect- oriented Ontology Development advances modular ontology development and partial reuse of existing ontological knowledge. Complex Entity Recognition enhances traditional entity recognition techniques to recognize clusters of related textual information about entities. Semantic Pattern Mining combines semantic web technologies with pattern learning to mine for complex models by attaching background knowledge. This study introduces the afore-mentioned topics by analyzing applicable scenarios with economic and industrial focus, as well as research emphasis. Furthermore, a collection of existing datasets for the given areas of interest is presented and evaluated. The target audience includes researchers and developers of CSC technologies - people interested in semantic web features, ontology development, automation, extracting and mining valuable information in corporate environments. The aim of this study is to provide a comprehensive and broad overview over the three topics, give assistance for decision making in interesting scenarios and choosing practical datasets for evaluating custom problem statements. Detailed descriptions about attributes and metadata of the datasets should serve as starting point for individual ideas and approaches

    Discovery Of Strain Support On Community Relatives In Social Networks

    Get PDF
    We offer a variety of algorithms to solve this new problem-solving process through three stages: pre-processing to find relevant topics, setting up sessions for multiple users, building all members STPs are the (expected) values ​​for individuals through the development of design, and selection in URSTPs Recipients of STPs. Critical and sensitive information, a detailed study is available. Supporting the assumptions is simply the standard measure for evaluating the consistency of a model, and it is understood that the amount or percentage of information involved in the design is in the underlying database. Acquired patterns are not particularly attractive for this purpose, as they are rare but very important for individuals to exhibit personal and negative behaviors that are complemented by reduced self-esteem. We propose a framework for solving this problem in practice, and designing appropriate algorithms to help. Initially, we provide first-hand treatment and evidence-based methods to cover the topic and plan the session. This method can be considered as a good match between the titles you purchased and endorsed by the STP and other topics that may have occurred in the purchases purchased by a particular class. The results suggest that our approach is able to capture and reveal the personal behavior of internet users in a transparent way

    Document Clustering with Bursty Information

    Get PDF
    Nowadays, almost all text corpora, such as blogs, emails and RSS feeds, are a collection of text streams. The traditional vector space model (VSM), or bag-of-words representation, cannot capture the temporal aspect of these text streams. So far, only a few bursty features have been proposed to create text representations with temporal modeling for the text streams. We propose bursty feature representations that perform better than VSM on various text mining tasks, such as document retrieval, topic modeling and text categorization. For text clustering, we propose a novel framework to generate bursty distance measure. We evaluated it on UPGMA, Star and K-Medoids clustering algorithms. The bursty distance measure did not only perform equally well on various text collections, but it was also able to cluster the news articles related to specific events much better than other models

    From coincidence to purposeful flow? properties of transcendental information cascades

    Get PDF
    In this paper, we investigate a method for constructing cascades of information co-occurrence, which is suitable to trace emergent structures in information in scenarios where rich contextual features are unavailable. Our method relies only on the temporal order of content-sharing activities, and intrinsic properties of the shared content itself. We apply this method to analyse information dissemination patterns across the active online citizen science project Planet Hunters, a part of the Zooniverse platform. Our results lend insight into both structural and informational properties of different types of identifiers that can be used and combined to construct cascades. In particular, significant differences are found in the structural properties of information cascades when hashtags as used as cascade identifiers, compared with other content features. We also explain apparent local information losses in cascades in terms of information obsolescence and cascade divergence; e.g., when a cascade branches into multiple, divergent cascades with combined capacity equal to the original

    Identifying and Disentangling Interleaved Activities of Daily Living from Sensor Data

    Get PDF
    Activity discovery (AD) refers to the unsupervised extraction of structured activity data from a stream of sensor readings in a real-world or virtual environment. Activity discovery is part of the broader topic of activity recognition, which has potential uses in fields as varied as social work and elder care, psychology and intrusion detection. Since activity recognition datasets are both hard to come by, and very time consuming to label, the development of reliable activity discovery systems could be of significant utility to the researchers and developers working in the field, as well as to the wider machine learning community. This thesis focuses on the investigation of activity discovery systems that can deal with interleaving, which refers to the phenomenon of continuous switching between multiple high-level activities over a short period of time. This is a common characteristic of the real-world datastreams that activity discovery systems have to deal with, but it is one that is unfortunately often left unaddressed in the existing literature. As part of the research presented in this thesis, the fact that activities exist at multiple levels of abstraction is highlighted. A single activity is often a constituent element of a larger, more complex activity, and in turn has constituents of its own that are activities. Thus this investigation necessarily considers activity discovery systems that can find these hierarchies. The primary contribution of this thesis is the development and evaluation of an activity discovery system that is capable of identifying interleaved activities in sequential data. Starting from a baseline system implemented using a topic model, novel approaches are proposed making use of modern language models taken from the field of natural language processing, before moving on to more advanced language modelling that can handle complex, interleaved data. As well as the identification of activities, the thesis also proposes the abstraction of activities into larger, more complex activities. This allows for the construction of hierarchies of activities that more closely reflect the complex inherent structure of activities present in real-world datasets compared to other approaches. The thesis also discusses a number of important issues relating to the evaluation of activity discovery systems, and examines how existing evaluation metrics may at times be misleading. This includes highlighting the existence of differing abstraction issues in activity discovery evaluation, and suggestions for how this problem can be mitigated. Finally, alternative evaluation metrics are investigated. Naturally, this dissertation does not fully solve the problem of activity discovery, and work remains to be done. However, a number of the most pressing issues that affect real-world activity discovery systems are tackled head-on, and show that useful progress can indeed be made on them. This work aims to benefit systems that are as “clean slate as possible, and hence incorporate no domain-specific knowledge. This is perhaps somewhat of an artificial handicap to impose in this problem domain, but it does have the advantage of making this work applicable to as broad a range of domains as possible
    corecore