5 research outputs found

    Auditing file system permissions using Association Rule Mining

    Get PDF
    Identifying irregular file system permissions in large, multi-user systems is challenging due to the complexity of gaining structural understanding from large volumes of permission information. This challenge is exacerbated when file systems permissions are allocated in an ad-hoc manner when new access rights are required, and when access rights become redundant as users change job roles or terminate employment. These factors make it challenging to identify what can be classed as an irregular file system permission, as well as identifying if they are irregular and exposing a vulnerability. The current way of finding such irregularities is by performing an exhaustive audit of the permission distribution; however, this requires expert knowledge and a significant amount of time. In this paper a novel method of modelling file system permissions which can be used by association rule mining techniques to identify irregular permissions is presented. This results in the creation of object-centric model as a by-product. This technique is then implemented and tested on Microsoft's New Technology File System permissions (NTFS). Empirical observations are derived by making comparisons with expert knowledge to determine the effectiveness of the proposed technique on five diverse real-world directory structures extracted from different organisations. The results demonstrate that the technique is able to correctly identify irregularities with an average accuracy rate of 91%, minimising the reliance on expert knowledge. Experiments are also performed on synthetic directory structures which demonstrate an accuracy rate of 95% when the number of irregular permissions constitutes 1% of the total number. This is a significant contribution as it creates the possibility of identifying vulnerabilities without prior knowledge of how to file systems permissions are implemented within a directory structure

    Semantic-Based Policy Composition for Privacy-Demanding Data Linkage

    Get PDF
    Record linkage can be used to support current and future health research across populations however such approaches give rise to many challenges related to patient privacy and confidentiality including inference attacks. To address this, we present a semantic-based policy framework where linkage privacy detects attribute associations that can lead to inference disclosure issues. To illustrate the effectiveness of the approach, we present a case study exploring health data combining spatial, ethnicity and language information from several major on-going projects occurring across Australia. Compared with classic access control models, the results show that our proposal outperforms other approaches with regards to effectiveness, reliability and subsequent data utility

    Misconfiguration in Firewalls and Network Access Controls: Literature Review

    Get PDF
    Firewalls and network access controls play important roles in security control and protection. Those firewalls may create an incorrect sense or state of protection if they are improperly configured. One of the major configuration problems in firewalls is related to misconfiguration in the access control roles added to the firewall that will control network traffic. In this paper, we evaluated recent research trends and open challenges related to firewalls and access controls in general and misconfiguration problems in particular. With the recent advances in next-generation (NG) firewalls, firewall roles can be auto-generated based on networks and threats. Nonetheless, and due to the large number of roles in any medium to large networks, roles’ misconfiguration may occur for several reasons and will impact the performance of the firewall and overall network and protection efficiency

    An Effective Modality Conflict Model for Identifying Applicable Policies During Policy Evaluation

    Get PDF
    Policy evaluation is a process to determine whether a request submitted by a user satisfies the access control policies defined by an organization. Modality conflict is one of the main issues in policy evaluation. Existing modality conflict detection approaches do not consider complex condition attributes such as spatial and temporal constraints. An effective authorization propagation rule is needed to detect the modality conflicts that occur among the applicable policies. This work proposes a modality conflict detection model to identify the applicable policies during policy evaluation, which supports an authorization propagation rule to investigate the class-subclass relationships of a subject, resource, action, and location of a request and a policy. The comparison with previous work is conducted, and findings show the solution which considers the condition attribute (i.e. spatial and temporal constraints) can affect the decision as to whether the applicable policies should be retrieved or not which further affect the accuracy of the modality conflict detection process. Whereas the applicable policies which are retrieved for a request can influence the detection of modality conflict among the applicable policies. In conclusion, our proposed solution is more effective in identifying the applicable policies and detecting modality conflict than the previous work

    Policy-driven Security Management for Gateway-Oriented Reconfigurable Ecosystems

    Get PDF
    abstract: With the increasing user demand for low latency, elastic provisioning of computing resources coupled with ubiquitous and on-demand access to real-time data, cloud computing has emerged as a popular computing paradigm to meet growing user demands. However, with the introduction and rising use of wear- able technology and evolving uses of smart-phones, the concept of Internet of Things (IoT) has become a prevailing notion in the currently growing technology industry. Cisco Inc. has projected a data creation of approximately 403 Zetabytes (ZB) by 2018. The combination of bringing benign devices and connecting them to the web has resulted in exploding service and data aggregation requirements, thus requiring a new and innovative computing platform. This platform should have the capability to provide robust real-time data analytics and resource provisioning to clients, such as IoT users, on-demand. Such a computation model would need to function at the edge-of-the-network, forming a bridge between the large cloud data centers and the distributed connected devices. This research expands on the notion of bringing computational power to the edge- of-the-network, and then integrating it with the cloud computing paradigm whilst providing services to diverse IoT-based applications. This expansion is achieved through the establishment of a new computing model that serves as a platform for IoT-based devices to communicate with services in real-time. We name this paradigm as Gateway-Oriented Reconfigurable Ecosystem (GORE) computing. Finally, this thesis proposes and discusses the development of a policy management framework for accommodating our proposed computational paradigm. The policy framework is designed to serve both the hosted applications and the GORE paradigm by enabling them to function more efficiently. The goal of the framework is to ensure uninterrupted communication and service delivery between users and their applications.Dissertation/ThesisMasters Thesis Computer Science 201
    corecore