411 research outputs found

    Encapsulation of Soft Computing Approaches within Itemset Mining a A Survey

    Get PDF
    Data Mining discovers patterns and trends by extracting knowledge from large databases. Soft Computing techniques such as fuzzy logic, neural networks, genetic algorithms, rough sets, etc. aims to reveal the tolerance for imprecision and uncertainty for achieving tractability, robustness and low-cost solutions. Fuzzy Logic and Rough sets are suitable for handling different types of uncertainty. Neural networks provide good learning and generalization. Genetic algorithms provide efficient search algorithms for selecting a model, from mixed media data. Data mining refers to information extraction while soft computing is used for information processing. For effective knowledge discovery from large databases, both Soft Computing and Data Mining can be merged. Association rule mining (ARM) and Itemset mining focus on finding most frequent item sets and corresponding association rules, extracting rare itemsets including temporal and fuzzy concepts in discovered patterns. This survey paper explores the usage of soft computing approaches in itemset utility mining

    An Efficient Rigorous Approach for Identifying Statistically Significant Frequent Itemsets

    Full text link
    As advances in technology allow for the collection, storage, and analysis of vast amounts of data, the task of screening and assessing the significance of discovered patterns is becoming a major challenge in data mining applications. In this work, we address significance in the context of frequent itemset mining. Specifically, we develop a novel methodology to identify a meaningful support threshold s* for a dataset, such that the number of itemsets with support at least s* represents a substantial deviation from what would be expected in a random dataset with the same number of transactions and the same individual item frequencies. These itemsets can then be flagged as statistically significant with a small false discovery rate. We present extensive experimental results to substantiate the effectiveness of our methodology.Comment: A preliminary version of this work was presented in ACM PODS 2009. 20 pages, 0 figure

    Finding the True Frequent Itemsets

    Full text link
    Frequent Itemsets (FIs) mining is a fundamental primitive in data mining. It requires to identify all itemsets appearing in at least a fraction θ\theta of a transactional dataset D\mathcal{D}. Often though, the ultimate goal of mining D\mathcal{D} is not an analysis of the dataset \emph{per se}, but the understanding of the underlying process that generated it. Specifically, in many applications D\mathcal{D} is a collection of samples obtained from an unknown probability distribution π\pi on transactions, and by extracting the FIs in D\mathcal{D} one attempts to infer itemsets that are frequently (i.e., with probability at least θ\theta) generated by π\pi, which we call the True Frequent Itemsets (TFIs). Due to the inherently stochastic nature of the generative process, the set of FIs is only a rough approximation of the set of TFIs, as it often contains a huge number of \emph{false positives}, i.e., spurious itemsets that are not among the TFIs. In this work we design and analyze an algorithm to identify a threshold θ^\hat{\theta} such that the collection of itemsets with frequency at least θ^\hat{\theta} in D\mathcal{D} contains only TFIs with probability at least 1−δ1-\delta, for some user-specified δ\delta. Our method uses results from statistical learning theory involving the (empirical) VC-dimension of the problem at hand. This allows us to identify almost all the TFIs without including any false positive. We also experimentally compare our method with the direct mining of D\mathcal{D} at frequency θ\theta and with techniques based on widely-used standard bounds (i.e., the Chernoff bounds) of the binomial distribution, and show that our algorithm outperforms these methods and achieves even better results than what is guaranteed by the theoretical analysis.Comment: 13 pages, Extended version of work appeared in SIAM International Conference on Data Mining, 201

    Mining Frequent Itemsets Using Genetic Algorithm

    Full text link
    In general frequent itemsets are generated from large data sets by applying association rule mining algorithms like Apriori, Partition, Pincer-Search, Incremental, Border algorithm etc., which take too much computer time to compute all the frequent itemsets. By using Genetic Algorithm (GA) we can improve the scenario. The major advantage of using GA in the discovery of frequent itemsets is that they perform global search and its time complexity is less compared to other algorithms as the genetic algorithm is based on the greedy approach. The main aim of this paper is to find all the frequent itemsets from given data sets using genetic algorithm

    Exploring Decomposition for Solving Pattern Mining Problems

    Get PDF
    This article introduces a highly efficient pattern mining technique called Clustering-based Pattern Mining (CBPM). This technique discovers relevant patterns by studying the correlation between transactions in the transaction database based on clustering techniques. The set of transactions is first clustered, such that highly correlated transactions are grouped together. Next, we derive the relevant patterns by applying a pattern mining algorithm to each cluster. We present two different pattern mining algorithms, one applying an approximation-based strategy and another based on an exact strategy. The approximation-based strategy takes into account only the clusters, whereas the exact strategy takes into account both clusters and shared items between clusters. To boost the performance of the CBPM, a GPU-based implementation is investigated. To evaluate the CBPM framework, we perform extensive experiments on several pattern mining problems. The results from the experimental evaluation show that the CBPM provides a reduction in both the runtime and memory usage. Also, CBPM based on the approximate strategy provides good accuracy, demonstrating its effectiveness and feasibility. Our GPU implementation achieves significant speedup of up to 552× on a single GPU using big transaction databases.publishedVersio
    • …
    corecore