36,597 research outputs found

    The Bursty Dynamics of the Twitter Information Network

    Full text link
    In online social media systems users are not only posting, consuming, and resharing content, but also creating new and destroying existing connections in the underlying social network. While each of these two types of dynamics has individually been studied in the past, much less is known about the connection between the two. How does user information posting and seeking behavior interact with the evolution of the underlying social network structure? Here, we study ways in which network structure reacts to users posting and sharing content. We examine the complete dynamics of the Twitter information network, where users post and reshare information while they also create and destroy connections. We find that the dynamics of network structure can be characterized by steady rates of change, interrupted by sudden bursts. Information diffusion in the form of cascades of post re-sharing often creates such sudden bursts of new connections, which significantly change users' local network structure. These bursts transform users' networks of followers to become structurally more cohesive as well as more homogenous in terms of follower interests. We also explore the effect of the information content on the dynamics of the network and find evidence that the appearance of new topics and real-world events can lead to significant changes in edge creations and deletions. Lastly, we develop a model that quantifies the dynamics of the network and the occurrence of these bursts as a function of the information spreading through the network. The model can successfully predict which information diffusion events will lead to bursts in network dynamics

    On the discovery of social roles in large scale social systems

    Get PDF
    The social role of a participant in a social system is a label conceptualizing the circumstances under which she interacts within it. They may be used as a theoretical tool that explains why and how users participate in an online social system. Social role analysis also serves practical purposes, such as reducing the structure of complex systems to rela- tionships among roles rather than alters, and enabling a comparison of social systems that emerge in similar contexts. This article presents a data-driven approach for the discovery of social roles in large scale social systems. Motivated by an analysis of the present art, the method discovers roles by the conditional triad censuses of user ego-networks, which is a promising tool because they capture the degree to which basic social forces push upon a user to interact with others. Clusters of censuses, inferred from samples of large scale network carefully chosen to preserve local structural prop- erties, define the social roles. The promise of the method is demonstrated by discussing and discovering the roles that emerge in both Facebook and Wikipedia. The article con- cludes with a discussion of the challenges and future opportunities in the discovery of social roles in large social systems

    Domino: exploring mobile collaborative software adaptation

    Get PDF
    Social Proximity Applications (SPAs) are a promising new area for ubicomp software that exploits the everyday changes in the proximity of mobile users. While a number of applications facilitate simple file sharing between co–present users, this paper explores opportunities for recommending and sharing software between users. We describe an architecture that allows the recommendation of new system components from systems with similar histories of use. Software components and usage histories are exchanged between mobile users who are in proximity with each other. We apply this architecture in a mobile strategy game in which players adapt and upgrade their game using components from other players, progressing through the game through sharing tools and history. More broadly, we discuss the general application of this technique as well as the security and privacy challenges to such an approach

    Networked Individualism of Urban Residents: Discovering the Communicative Ecology in Inner-City Apartment Buildings

    Get PDF
    Certain patterns of interaction between people point to networks as an adequate conceptual model to characterise some aspects of social relationships mediated or facilitated by information and communication technology. Wellman proposes a shift from groups to networks and describes the ambivalent nature inherent in an ego-centric yet still well-connected portfolio of sociability with the term ‘networked individualism’. In this paper we use qualitative data from an action research study of social networks of residents in three inner-city apartment buildings in Australia to provide empirical grounding for the theoretical concept of networked individualism. However, this model focuses on network interaction rather than collective interaction. We propose ‘communicative ecology’ as a concept which integrates the three dimensions of "online and offline", "global and local" as well as "collective and networked". We present our research on three layers of interpretation (technical, social and discursive) to deliver a rich description of the communicative ecology we found, that is, the way residents negotiate membership, trust, privacy, reciprocity, permeability and social roles in person-to-person mediated and direct relationships. We find that residents seamlessly traverse between online and offline communication; local communication and interaction maintains a more prominent position than global or geographically dispersed communication; and residents follow a dual approach which allows them to switch between collective and networked interaction depending on purpose and context

    Evolution of Ego-networks in Social Media with Link Recommendations

    Full text link
    Ego-networks are fundamental structures in social graphs, yet the process of their evolution is still widely unexplored. In an online context, a key question is how link recommender systems may skew the growth of these networks, possibly restraining diversity. To shed light on this matter, we analyze the complete temporal evolution of 170M ego-networks extracted from Flickr and Tumblr, comparing links that are created spontaneously with those that have been algorithmically recommended. We find that the evolution of ego-networks is bursty, community-driven, and characterized by subsequent phases of explosive diameter increase, slight shrinking, and stabilization. Recommendations favor popular and well-connected nodes, limiting the diameter expansion. With a matching experiment aimed at detecting causal relationships from observational data, we find that the bias introduced by the recommendations fosters global diversity in the process of neighbor selection. Last, with two link prediction experiments, we show how insights from our analysis can be used to improve the effectiveness of social recommender systems.Comment: Proceedings of the 10th ACM International Conference on Web Search and Data Mining (WSDM 2017), Cambridge, UK. 10 pages, 16 figures, 1 tabl

    Seeing the Unseen Network: Inferring Hidden Social Ties from Respondent-Driven Sampling

    Full text link
    Learning about the social structure of hidden and hard-to-reach populations --- such as drug users and sex workers --- is a major goal of epidemiological and public health research on risk behaviors and disease prevention. Respondent-driven sampling (RDS) is a peer-referral process widely used by many health organizations, where research subjects recruit other subjects from their social network. In such surveys, researchers observe who recruited whom, along with the time of recruitment and the total number of acquaintances (network degree) of respondents. However, due to privacy concerns, the identities of acquaintances are not disclosed. In this work, we show how to reconstruct the underlying network structure through which the subjects are recruited. We formulate the dynamics of RDS as a continuous-time diffusion process over the underlying graph and derive the likelihood for the recruitment time series under an arbitrary recruitment time distribution. We develop an efficient stochastic optimization algorithm called RENDER (REspoNdent-Driven nEtwork Reconstruction) that finds the network that best explains the collected data. We support our analytical results through an exhaustive set of experiments on both synthetic and real data.Comment: A full version with technical proofs. Accepted by AAAI-1

    Towards the cloudification of the social networks analytics

    Get PDF
    In the last years, with the increase of the available data from social networks and the rise of big data technologies, social data has emerged as one of the most profitable market for companies to increase their benefits. Besides, social computation scientists see such data as a vast ocean of information to study modern human societies. Nowadays, enterprises and researchers are developing their own mining tools in house, or they are outsourcing their social media mining needs to specialised companies with its consequent economical cost. In this paper, we present the first cloud computing service to facilitate the deployment of social media analytics applications to allow data practitioners to use social mining tools as a service. The main advantage of this service is the possibility to run different queries at the same time and combine their results in real time. Additionally, we also introduce twearch, a prototype to develop twitter mining algorithms as services in the cloud.Peer ReviewedPostprint (author’s final draft
    • …
    corecore