1,142 research outputs found

    Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data

    Full text link
    Subsequence clustering of multivariate time series is a useful tool for discovering repeated patterns in temporal data. Once these patterns have been discovered, seemingly complicated datasets can be interpreted as a temporal sequence of only a small number of states, or clusters. For example, raw sensor data from a fitness-tracking application can be expressed as a timeline of a select few actions (i.e., walking, sitting, running). However, discovering these patterns is challenging because it requires simultaneous segmentation and clustering of the time series. Furthermore, interpreting the resulting clusters is difficult, especially when the data is high-dimensional. Here we propose a new method of model-based clustering, which we call Toeplitz Inverse Covariance-based Clustering (TICC). Each cluster in the TICC method is defined by a correlation network, or Markov random field (MRF), characterizing the interdependencies between different observations in a typical subsequence of that cluster. Based on this graphical representation, TICC simultaneously segments and clusters the time series data. We solve the TICC problem through alternating minimization, using a variation of the expectation maximization (EM) algorithm. We derive closed-form solutions to efficiently solve the two resulting subproblems in a scalable way, through dynamic programming and the alternating direction method of multipliers (ADMM), respectively. We validate our approach by comparing TICC to several state-of-the-art baselines in a series of synthetic experiments, and we then demonstrate on an automobile sensor dataset how TICC can be used to learn interpretable clusters in real-world scenarios.Comment: This revised version fixes two small typos in the published versio

    Probabilistic change detection and visualization methods for the assessment of temporal stability in biomedical data quality

    Full text link
    The final publication is available at Springer via http://dx.doi.org/DOI 10.1007/s10618-014-0378-6. Published online.Knowledge discovery on biomedical data can be based on on-line, data-stream analyses, or using retrospective, timestamped, off-line datasets. In both cases, changes in the processes that generate data or in their quality features through time may hinder either the knowledge discovery process or the generalization of past knowledge. These problems can be seen as a lack of data temporal stability. This work establishes the temporal stability as a data quality dimension and proposes new methods for its assessment based on a probabilistic framework. Concretely, methods are proposed for (1) monitoring changes, and (2) characterizing changes, trends and detecting temporal subgroups. First, a probabilistic change detection algorithm is proposed based on the Statistical Process Control of the posterior Beta distribution of the Jensen–Shannon distance, with a memoryless forgetting mechanism. This algorithm (PDF-SPC) classifies the degree of current change in three states: In-Control, Warning, and Out-of-Control. Second, a novel method is proposed to visualize and characterize the temporal changes of data based on the projection of a non-parametric information-geometric statistical manifold of time windows. This projection facilitates the exploration of temporal trends using the proposed IGT-plot and, by means of unsupervised learning methods, discovering conceptually-related temporal subgroups. Methods are evaluated using real and simulated data based on the National Hospital Discharge Survey (NHDS) dataset.The work by C Saez has been supported by an Erasmus Lifelong Learning Programme 2013 Grant. This work has been supported by own IBIME funds. The authors thank Dr. Gregor Stiglic, from the Univeristy of Maribor, Slovenia, for his support on the NHDS data.Sáez Silvestre, C.; Pereira Rodrigues, P.; Gama, J.; Robles Viejo, M.; García Gómez, JM. (2014). Probabilistic change detection and visualization methods for the assessment of temporal stability in biomedical data quality. Data Mining and Knowledge Discovery. 28:1-1. doi:10.1007/s10618-014-0378-6S1128Aggarwal C (2003) A framework for diagnosing changes in evolving data streams. In Proceedings of the International Conference on Management of Data ACM SIGMOD, pp 575–586Amari SI, Nagaoka H (2007) Methods of information geometry. American Mathematical Society, Providence, RIArias E (2014) United states life tables, 2009. Natl Vital Statist Rep 62(7): 1–63Aspden P, Corrigan JM, Wolcott J, Erickson SM (2004) Patient safety: achieving a new standard for care. Committee on data standards for patient safety. The National Academies Press, Washington, DCBasseville M, Nikiforov IV (1993) Detection of abrupt changes: theory and application. Prentice-Hall Inc, Upper Saddle River, NJBorg I, Groenen PJF (2010) Modern multidimensional scaling: theory and applications. Springer, BerlinBowman AW, Azzalini A (1997) Applied smoothing techniques for data analysis: the Kernel approach with S-plus illustrations (Oxford statistical science series). Oxford University Press, OxfordBrandes U, Pich C (2007) Eigensolver methods for progressive multidimensional scaling of large data. In: Kaufmann M, Wagner D (eds) Graph drawing. Lecture notes in computer science, vol 4372. Springer, Berlin, pp 42–53Brockwell P, Davis R (2009) Time series: theory and methods., Springer series in statisticsSpringer, BerlinCesario SK (2002) The “Christmas Effect” and other biometeorologic influences on childbearing and the health of women. J Obstet Gynecol Neonatal Nurs 31(5):526–535Chakrabarti K, Garofalakis M, Rastogi R, Shim K (2001) Approximate query processing using wavelets. VLDB J 10(2–3):199–223Cruz-Correia RJ, Pereira Rodrigues P, Freitas A, Canario Almeida F, Chen R, Costa-Pereira A (2010) Data quality and integration issues in electronic health records. Information discovery on electronic health records, pp 55–96Csiszár I (1967) Information-type measures of difference of probability distributions and indirect observations. Studia Sci Math Hungar 2:299–318Dasu T, Krishnan S, Lin D, Venkatasubramanian S, Yi K (2009) Change (detection) you can believe. In: Finding distributional shifts in data streams. In: Proceedings of the 8th international symposium on intelligent data analysis: advances in intelligent data analysis VIII, IDA ’09. Springer, Berlin, pp 21–34Endres D, Schindelin J (2003) A new metric for probability distributions. IEEE Trans Inform Theory 49(7):1858–1860Gama J, Gaber MM (2007) Learning from data streams: processing techniques in sensor networks. Springer, BerlinGama J, Medas P, Castillo G, Rodrigues P (2004) Learning with drift detection. In: Bazzan A, Labidi S (eds) Advances in artificial intelligence—SBIA 2004., Lecture notes in computer scienceSpringer, Berlin, pp 286–295Gama J (2010) Knowledge discovery from data streams, 1st edn. Chapman & Hall, LondonGehrke J, Korn F, Srivastava D (2001) On computing correlated aggregates over continual data streams. SIGMOD Rec 30(2):13–24Guha S, Shim K, Woo J (2004) Rehist: relative error histogram construction algorithms. In: Proceedings of the thirtieth international conference on very large data bases VLDB, pp 300–311Han J, Kamber M, Pei J (2012) Data mining: concepts and techniques. Morgan Kaufmann, Elsevier, Burlington, MAHowden LM, Meyer JA, (2011) Age and sex composition. 2010 Census Briefs US Department of Commerce. Economics and Statistics Administration, US Census BureauHrovat G, Stiglic G, Kokol P, Ojstersek M (2014) Contrasting temporal trend discovery for large healthcare databases. Comput Methods Program Biomed 113(1):251–257Keim DA (2000) Designing pixel-oriented visualization techniques: theory and applications. IEEE Trans Vis Comput Graph 6(1):59–78Kifer D, Ben-David S, Gehrke J (2004) Detecting change in data streams. In: Proceedings of the thirtieth international conference on Very large data bases, VLDB Endowment, VLDB ’04, vol 30, pp 180–191Klinkenberg R, Renz I (1998) Adaptive information filtering: Learning in the presence of concept drifts. In: Workshop notes of the ICML/AAAI-98 workshop learning for text categorization. AAAI Press, Menlo Park, pp 33–40Kohonen T (1982) Self-organized formation of topologically correct feature maps. Biolog Cybern 43(1):59–69Lin J (1991) Divergence measures based on the Shannon entropy. IEEE Trans Inform Theory 37:145–151Mitchell TM, Caruana R, Freitag D, McDermott J, Zabowski D (1994) Experience with a learning personal assistant. Commun ACM 37(7):80–91Mouss H, Mouss D, Mouss N, Sefouhi L (2004) Test of page-hinckley, an approach for fault detection in an agro-alimentary production system. In: Proceedings of the 5th Asian Control Conference, vol 2, pp 815–818National Research Council (2011) Explaining different levels of longevity in high-income countries. The National Academies Press, Washington, DCNHDS (2010) United states department of health and human services. Centers for disease control and prevention. National center for health statistics. National hospital discharge survey codebookNHDS (2014) National Center for Health Statistics, National Hospital Discharge Survey (NHDS) data, US Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics, Hyattsville, Maryland. http://www.cdc.gov/nchs/nhds.htmPapadimitriou S, Sun J, Faloutsos C (2005) Streaming pattern discovery in multiple time-series. In: Proceedings of the 31st international conference on very large data bases, VLDB endowment, VLDB ’05, pp 697–708Parzen E (1962) On estimation of a probability density function and mode. Ann Math Statist 33(3):1065–1076Ramsay JO, Silverman BW (2005) Functional data analysis. Springer, New YorkRodrigues P, Correia R (2013) Streaming virtual patient records. In: Krempl G, Zliobaite I, Wang Y, Forman G (eds) Real-world challenges for data stream mining. University Magdeburg, Otto-von-Guericke, pp 34–37Rodrigues P, Gama J, Pedroso J (2008) Hierarchical clustering of time-series data streams. IEEE Trans Knowl Data Eng 20(5):615–627Rodrigues PP, Gama Ja (2010) A simple dense pixel visualization for mobile sensor data mining. In: Proceedings of the second international conference on knowledge discovery from sensor data, sensor-KDD’08. Springer, Berlin, pp 175–189Rodrigues PP, Gama J, Sebastiã o R (2010) Memoryless fading windows in ubiquitous settings. In Proceedings of ubiquitous data mining (UDM) workshop in conjunction with the 19th european conference on artificial intelligence—ECAI 2010, pp 27–32Rodrigues PP, Sebastiã o R, Santos CC (2011) Improving cardiotocography monitoring: a memory-less stream learning approach. In: Proceedings of the learning from medical data streams workshop. Bled, SloveniaRubner Y, Tomasi C, Guibas L (2000) The earth mover’s distance as a metric for image retrieval. Int J Comput Vision 40(2):99–121Sebastião R, Gama J (2009) A study on change detection methods. In: 4th Portuguese conference on artificial intelligenceSebastião R, Gama J, Rodrigues P, Bernardes J (2010) Monitoring incremental histogram distribution for change detection in data streams. In: Gaber M, Vatsavai R, Omitaomu O, Gama J, Chawla N, Ganguly A (eds) Knowledge discovery from sensor data, vol 5840., Lecture notes in computer science. Springer, Berlin, pp 25–42Sebastião R, Silva M, Rabiço R, Gama J, Mendonça T (2013) Real-time algorithm for changes detection in depth of anesthesia signals. Evol Syst 4(1):3–12Sáez C, Martínez-Miranda J, Robles M, García-Gómez JM (2012) O rganizing data quality assessment of shifting biomedical data. Stud Health Technol Inform 180:721–725Sáez C, Robles M, García-Gómez JM (2013) Comparative study of probability distribution distances to define a metric for the stability of multi-source biomedical research data. In: Engineering in medicine and biology society (EMBC), 2013 35th annual international conference of the IEEE, pp 3226–3229Sáez C, Robles M, García-Gómez JM (2014) Stability metrics for multi-source biomedical data based on simplicial projections from probability distribution distances. Statist Method Med Res (forthcoming)Shewhart WA, Deming WE (1939) Statistical method from the viewpoint of quality control. Graduate School of the Department of Agriculture, Washington, DCShimazaki H, Shinomoto S (2010) Kernel bandwidth optimization in spike rate estimation. J Comput Neurosci 29(1–2):171–182Solberg LI, Engebretson KI, Sperl-Hillen JM, Hroscikoski MC, O’Connor PJ (2006) Are claims data accurate enough to identify patients for performance measures or quality improvement? the case of diabetes, heart disease, and depression. Am J Med Qual 21(4):238–245Spiliopoulou M, Ntoutsi I, Theodoridis Y, Schult R (2006) monic: modeling and monitoring cluster transitions. In: Proceedings of the 12th ACm SIGKDD international conference on knowledge discovery and data mining, KDD ’06. ACm, New York, NY, pp 706–711Stiglic G, Kokol P (2011) Interpretability of sudden concept drift in medical informatics domain. In Proceedings of the 2010 IEEE international conference on data mining workshops, pp 609–613Torgerson W (1952) Multidimensional scaling: I theory and method. Psychometrika 17(4):401–419Wang RY, Strong DM (1996) Beyond accuracy: what data quality means to data consumers. J Manage Inform Syst 12(4):5–33Weiskopf NG, Weng C (2013) M ethods and dimensions of electronic health record data quality assessment: enabling reuse for clinical research. J Am Med Inform Assoc 20(1):144–151Wellings K, Macdowall W, Catchpole M, Goodrich J (1999) Seasonal variations in sexual activity and their implications for sexual health promotion. J R Soc Med 92(2):60–64Westgard JO, Barry PL (2010) Basic QC practices: training in statistical quality control for medical laboratories. Westgard Quality Corporation, Madison, WIWidmer G, Kubat M (1996) Learning in the presence of concept drift and hidden contexts. Mach Learn 23(1):69–10

    Enhancing operational performance of AHUs through an advanced fault detection and diagnosis process based on temporal association and decision rules

    Get PDF
    The pervasive monitoring of HVAC systems through Building Energy Management Systems (BEMSs) is enabling the full exploitation of data-driven based methodologies for performing advanced energy management strategies. In this context, the implementation of Automated Fault Detection and Diagnosis (AFDD) based on collected operational data of Air Handling Units (AHUs) proved to be particularly effective to prevent anomalous running modes which can lead to significant energy waste over time and discomfort conditions in the built environment. The present work proposes a novel methodology for performing AFDD, based on both unsupervised and supervised data-driven methods tailored according to the operation of an AHU during transient and non-transient periods. The whole process is developed and tested on a sample of real data gathered from monitoring campaigns on two identical AHUs in the framework of the Research Project ASHRAE RP-1312. During the start-up period of operation, the methodology exploits Temporal Association Rules Mining (TARM) algorithm for an early detection of faults, while during non-transient period a number of classification models are developed for the identification of the deviation from the normal operation. The proposed methodology, conceived for quasi real-time implementation, proved to be capable of robustly and promptly identifying the presence of typical faults in AHUs

    A statistical approach for studying urban human dynamics

    Get PDF
    A thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Information Management, specialization in Geographic Information SystemsThis doctoral dissertation proposed several statistical approaches to analyse urban dynamics with aiming to provide tools for decision making processes and urban studies. It assumed that human activity and human mobility compose urban dynamics. Initially, it studied geolocated social media data and considered them as a proxy for where and when people carry out what it is defined as the human activity. It employed techniques associated with generalised linear models, functional data analysis, hierarchical clustering, and epidemic data, to explain the spatio-temporal distribution of the places where people interact with their social networks. Afterwards, to understand the mobility in urban environments, data coming from an underground railway system were used. The information was considered repeated daily measurements to capture the regularity of human behaviour. By implementing methods from functional principal components data analysis and hierarchical clustering, it was possible to describe the system and identify human mobility patterns

    Temporal decomposition and semantic enrichment of mobility flows

    Get PDF
    Mobility data has increasingly grown in volume over the past decade as loc- alisation technologies for capturing mobility ows have become ubiquitous. Novel analytical approaches for understanding and structuring mobility data are now required to support the back end of a new generation of space-time GIS systems. This data has become increasingly important as GIS is now an essen- tial decision support platform in many domains that use mobility data, such as eet management, accessibility analysis and urban transportation planning. This thesis applies the machine learning method of probabilistic topic mod- elling to decompose and semantically enrich mobility ow data. This process annotates mobility ows with semantic meaning by fusing them with geograph- ically referenced social media data. This thesis also explores the relationship between causality and correlation, as well as the predictability of semantic decompositions obtained during a case study using a real mobility dataset
    • …
    corecore