8 research outputs found

    OrgMining 2.0: A Novel Framework for Organizational Model Mining from Event Logs

    Full text link
    Providing appropriate structures around human resources can streamline operations and thus facilitate the competitiveness of an organization. To achieve this goal, modern organizations need to acquire an accurate and timely understanding of human resource grouping while faced with an ever-changing environment. The use of process mining offers a promising way to help address the need through utilizing event log data stored in information systems. By extracting knowledge about the actual behavior of resources participating in business processes from event logs, organizational models can be constructed, which facilitate the analysis of the de facto grouping of human resources relevant to process execution. Nevertheless, open research gaps remain to be addressed when applying the state-of-the-art process mining to analyze resource grouping. For one, the discovery of organizational models has only limited connections with the context of process execution. For another, a rigorous solution that evaluates organizational models against event log data is yet to be proposed. In this paper, we aim to tackle these research challenges by developing a novel framework built upon a richer definition of organizational models coupling resource grouping with process execution knowledge. By introducing notions of conformance checking for organizational models, the framework allows effective evaluation of organizational models, and therefore provides a foundation for analyzing and improving resource grouping based on event logs. We demonstrate the feasibility of this framework by proposing an approach underpinned by the framework for organizational model discovery, and also conduct experiments on real-life event logs to discover and evaluate organizational models.Comment: Manuscript initially submitted for review on 13/5/2020 with 38 pages, 10 figures, 11 table

    Process mining in healthcare : opportunities beyond the ordinary

    Get PDF
    Nowadays, in a Hospital Information System (HIS) huge amounts of data are stored about the care processes as they unfold. This data can be used for process mining. This way we can analyse the operational processes within a hospital based on facts rather than fiction. In order to enhance the uptake of process mining within the healthcare domain we present a healthcare reference model which exhaustively lists the typical types of data that exists within a HIS and that can be used for process mining. Based on this reference model, we elaborate on the most interesting kinds of process mining analyses that can be performed in order to illustrate the potential of process mining. As such, a basis is provided for governing and improving the processes within a hospital. Keywords: healthcare, process mining, reference mode

    Process mining in healthcare : opportunities beyond the ordinary

    Get PDF
    Nowadays, in a Hospital Information System (HIS) huge amounts of data are stored about the care processes as they unfold. This data can be used for process mining. This way we can analyse the operational processes within a hospital based on facts rather than fiction. In order to enhance the uptake of process mining within the healthcare domain we present a healthcare reference model which exhaustively lists the typical types of data that exists within a HIS and that can be used for process mining. Based on this reference model, we elaborate on the most interesting kinds of process mining analyses that can be performed in order to illustrate the potential of process mining. As such, a basis is provided for governing and improving the processes within a hospital. Keywords: healthcare, process mining, reference mode

    Verslo procesų prognozavimo ir imitavimo taikant sisteminių įvykių žurnalų analizės metodus tyrimas

    Get PDF
    Business process (BP) analysis is one of the core activities in organisations that lead to improvements and achievement of a competitive edge. BP modelling and simulation are one of the most widely applied methods for analysing and improving BPs. The analysis requires to model BP and to apply analysis techniques to the models to answer queries leading to improvements. The input of the analysis process is BP models. The models can be in the form of BP models using industry-accepted BP modelling languages, mathematical models, simulation models and others. The model creation is the most important part of the BP analysis, and it is both time-consuming and costly activity. Nowadays most of the data generated in the organisations are electronic. Therefore, the re-use of such data can improve the results of the analysis. Thus, the main goal of the thesis is to improve BP analysis and simulation by proposing a method to discover a BP model from an event log and automate simulation model generation. The dissertation consists of an introduction, three main chapters and general conclusions. The first chapter discusses BP analysis methods. In addition, the process mining research area is presented, the techniques for automated model discovery, model validation and execution prediction are analysed. The second part of the chapter investigates the area of BP simula-tion. The second chapter of the dissertation presents a novel method which automatically discovers Bayesian Belief Network from an event log and, furthermore, automatically generates BP simulation model. The discovery of the Bayesian Belief Network consists of three steps: the discovery of a directed acyclic graph, generation of conditional probability tables and their combination. The BP simulation model is generated from the discovered directed acyclic graph and uses the belief network inferences during the simulation to infer the execution of the BP and to generate activity data dur-ing the simulation. The third chapter presents the experimental research of the proposed network and discusses the validity of the research and experiments. The experiments use selected logs that exhibit a wide array of behaviour. The experiments are performed in order to test the discovery of the graphs, the inference of the current process instance execution probability, the predic-tion of the future execution of the process instances and the correctness of the simulation. The results of the dissertation were published in 9 scientific publica-tions, 2 of which were in reviewed scientific journals indexed in Clarivate Analytics Science Citation Index

    The application of process mining to care pathway analysis in the NHS

    Get PDF
    Background: Prostate cancer is the most common cancer in men in the UK and the sixth-fastest increasing cancer in males. Within England survival rates are improving, however, these are comparatively poorer than other countries. Currently, information available on outcomes of care is scant and there is an urgent need for techniques to improve healthcare systems and processes. Aims: To provide prostate cancer pathway analysis, by applying concepts of process mining and visualisation and comparing the performance metrics against the standard pathway laid out by national guidelines. Methods: A systematic review was conducted to see how process mining has been used in healthcare. Appropriate datasets for prostate cancer were identified within Imperial College Healthcare NHS Trust London. A process model was constructed by linking and transforming cohort data from six distinct database sources. The cohort dataset was filtered to include patients who had a PSA from 2010-2015, and validated by comparing the medical patient records against a Case-note audit. Process mining techniques were applied to the data to analyse performance and conformance of the prostate cancer pathway metrics to national guideline metrics. These techniques were evaluated with stakeholders to ascertain its impact on user experience. Results: Case note audit revealed 90% match against patients found in medical records. Application of process mining techniques showed massive heterogeneity as compared to the homogenous path laid out by national guidelines. This also gave insight into bottlenecks and deviations in the pathway. Evaluation with stakeholders showed that the visualisation and technology was well accepted, high quality and recommended to be used in healthcare decision making. Conclusion: Process mining is a promising technique used to give insight into complex and flexible healthcare processes. It can map the patient journey at a local level and audit it against explicit standards of good clinical practice, which will enable us to intervene at the individual and system level to improve care.Open Acces

    A Novel Approach for the Investigation of Multidisciplinary Collaboration using Social Network Analysis on Electronic Health Record Data

    Get PDF
    Social network analysis (SNA) is widely used to study multidisciplinary collaboration among healthcare professionals. Most of the earlier works have however relied on survey and observational data, which do not scale, and have been limited to only descriptive studies without providing insight on how to improve patient outcomes. However, since the widespread adoption of electronic health records (EHR) for care delivery, there has been progressively increasing interest in exploiting the rich collection of activity data that are captured in EHR systems. Ability to exploit EHR data has the potential to offer unprecedented capacity to study and improve multidisciplinary teams. Unfortunately, the methodologic approaches used so far have had significant limitations, which have hampered the realization of this promise. In this dissertation, I describe a novel, process-mining based methodologic approach for applying SNA to study multidisciplinary collaboration using metadata of clinical activities captured in EHR. First, I described the process of linking the EHR activity metadata to trauma registry data, which is rich in quality clinical and encounter data to produce a linked dataset that was used for the dissertation. Second, I described and applied the methodology to identify collaborative EHR usage patterns and correlated them to patient outcomes. I demonstrated that a more collaborative EHR usage pattern were associated with shorter emergency department length of stay, in the process, identifying meaningful insight that can be the focus of further research or intervention. And finally, I described and applied a modification of the methodology to identify and compare diurnal variations in collaborative care teams at various locations in the hospital. I demonstrated the presence of multi-team systems and described how the composition and collaborative patterns of the multi-team systems varied with the time of day. This dissertation provides a promising new direction for harnessing EHR data, and in doing so, sets the stage for future studies

    Improving data preparation for the application of process mining

    Get PDF
    Immersed in what is already known as the fourth industrial revolution, automation and data exchange are taking on a particularly relevant role in complex environments, such as industrial manufacturing environments or logistics. This digitisation and transition to the Industry 4.0 paradigm is causing experts to start analysing business processes from other perspectives. Consequently, where management and business intelligence used to dominate, process mining appears as a link, trying to build a bridge between both disciplines to unite and improve them. This new perspective on process analysis helps to improve strategic decision making and competitive capabilities. Process mining brings together data and process perspectives in a single discipline that covers the entire spectrum of process management. Through process mining, and based on observations of their actual operations, organisations can understand the state of their operations, detect deviations, and improve their performance based on what they observe. In this way, process mining is an ally, occupying a large part of current academic and industrial research. However, although this discipline is receiving more and more attention, it presents severe application problems when it is implemented in real environments. The variety of input data in terms of form, content, semantics, and levels of abstraction makes the execution of process mining tasks in industry an iterative, tedious, and manual process, requiring multidisciplinary experts with extensive knowledge of the domain, process management, and data processing. Currently, although there are numerous academic proposals, there are no industrial solutions capable of automating these tasks. For this reason, in this thesis by compendium we address the problem of improving business processes in complex environments thanks to the study of the state-of-the-art and a set of proposals that improve relevant aspects in the life cycle of processes, from the creation of logs, log preparation, process quality assessment, and improvement of business processes. Firstly, for this thesis, a systematic study of the literature was carried out in order to gain an in-depth knowledge of the state-of-the-art in this field, as well as the different challenges faced by this discipline. This in-depth analysis has allowed us to detect a number of challenges that have not been addressed or received insufficient attention, of which three have been selected and presented as the objectives of this thesis. The first challenge is related to the assessment of the quality of input data, known as event logs, since the requeriment of the application of techniques for improving the event log must be based on the level of quality of the initial data, which is why this thesis presents a methodology and a set of metrics that support the expert in selecting which technique to apply to the data according to the quality estimation at each moment, another challenge obtained as a result of our analysis of the literature. Likewise, the use of a set of metrics to evaluate the quality of the resulting process models is also proposed, with the aim of assessing whether improvement in the quality of the input data has a direct impact on the final results. The second challenge identified is the need to improve the input data used in the analysis of business processes. As in any data-driven discipline, the quality of the results strongly depends on the quality of the input data, so the second challenge to be addressed is the improvement of the preparation of event logs. The contribution in this area is the application of natural language processing techniques to relabel activities from textual descriptions of process activities, as well as the application of clustering techniques to help simplify the results, generating more understandable models from a human point of view. Finally, the third challenge detected is related to the process optimisation, so we contribute with an approach for the optimisation of resources associated with business processes, which, through the inclusion of decision-making in the creation of flexible processes, enables significant cost reductions. Furthermore, all the proposals made in this thesis are validated and designed in collaboration with experts from different fields of industry and have been evaluated through real case studies in public and private projects in collaboration with the aeronautical industry and the logistics sector
    corecore