926 research outputs found

    Classification of Time-Series Images Using Deep Convolutional Neural Networks

    Full text link
    Convolutional Neural Networks (CNN) has achieved a great success in image recognition task by automatically learning a hierarchical feature representation from raw data. While the majority of Time-Series Classification (TSC) literature is focused on 1D signals, this paper uses Recurrence Plots (RP) to transform time-series into 2D texture images and then take advantage of the deep CNN classifier. Image representation of time-series introduces different feature types that are not available for 1D signals, and therefore TSC can be treated as texture image recognition task. CNN model also allows learning different levels of representations together with a classifier, jointly and automatically. Therefore, using RP and CNN in a unified framework is expected to boost the recognition rate of TSC. Experimental results on the UCR time-series classification archive demonstrate competitive accuracy of the proposed approach, compared not only to the existing deep architectures, but also to the state-of-the art TSC algorithms.Comment: The 10th International Conference on Machine Vision (ICMV 2017

    HyCLASSS: A Hybrid Classifier for Automatic Sleep Stage Scoring

    Get PDF
    Automatic identification of sleep stage is an important step in a sleep study. In this paper, we propose a hybrid automatic sleep stage scoring approach, named HyCLASSS, based on single channel electroencephalogram (EEG). HyCLASSS, for the first time, leverages both signal and stage transition features of human sleep for automatic identification of sleep stages. HyCLASSS consists of two parts: A random forest classifier and correction rules. Random forest classifier is trained using 30 EEG signal features, including temporal, frequency, and nonlinear features. The correction rules are constructed based on stage transition feature, importing the continuity property of sleep, and characteristic of sleep stage transition. Compared with the gold standard of manual scoring using Rechtschaffen and Kales criterion, the overall accuracy and kappa coefficient applied on 198 subjects has reached 85.95% and 0.8046 in our experiment, respectively. The performance of HyCLASS compared favorably to previous work, and it could be integrated with sleep evaluation or sleep diagnosis system in the future

    The Discovery and Interpretation of Evidence Accumulation Stages

    Get PDF
    To improve the understanding of cognitive processing stages, we combined two prominent traditions in cognitive science: evidence accumulation models and stage discovery methods. While evidence accumulation models have been applied to a wide variety of tasks, they are limited to tasks in which decision-making effects can be attributed to a single processing stage. Here, we propose a new method that first uses machine learning to discover processing stages in EEG data and then applies evidence accumulation models to characterize the duration effects in the identified stages. To evaluate this method, we applied it to a previously published associative recognition task (Application 1) and a previously published random dot motion task with a speed-accuracy trade-off manipulation (Application 2). In both applications, the evidence accumulation models accounted better for the data when we first applied the stage-discovery method, and the resulting parameter estimates where generally in line with psychological theories. In addition, in Application 1 the results shed new light on target-foil effects in associative recognition, while in Application 2 the stage discovery method identified an additional stage in the accuracy-focused condition — challenging standard evidence accumulation accounts. We conclude that the new framework provides a powerful new tool to investigate processing stages

    Abstracts of the 2014 Brains, Minds, and Machines Summer School

    Get PDF
    A compilation of abstracts from the student projects of the 2014 Brains, Minds, and Machines Summer School, held at Woods Hole Marine Biological Lab, May 29 - June 12, 2014.This work was supported by the Center for Brains, Minds and Machines (CBMM), funded by NSF STC award CCF-1231216

    Multi-Scale Information, Network, Causality, and Dynamics: Mathematical Computation and Bayesian Inference to Cognitive Neuroscience and Aging

    Get PDF
    The human brain is estimated to contain 100 billion or so neurons and 10 thousand times as many connections. Neurons never function in isolation: each of them is connected to 10, 000 others and they interact extensively every millisecond. Brain cells are organized into neural circuits often in a dynamic way, processing specific types of information and providing th
    • …
    corecore