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HyCLASSS: A Hybrid Classifier for Automatic
Sleep Stage Scoring

Xiaojin Li

Abstract—Automatic identification of sleep stage is an
important step in a sleep study. In this paper, we propose a
hybrid automatic sleep stage scoring approach, named Hy-
CLASSS, based on single channel electroencephalogram
(EEG). HyCLASSS, for the first time, leverages both signal
and stage transition features of human sleep for automatic
identification of sleep stages. HyCLASSS consists of two
parts: A random forest classifier and correction rules. Ran-
dom forest classifier is trained using 30 EEG signal features,
including temporal, frequency, and nonlinear features. The
correction rules are constructed based on stage transition
feature, importing the continuity property of sleep, and char-
acteristic of sleep stage transition. Compared with the gold
standard of manual scoring using Rechtschaffen and Kales
criterion, the overall accuracy and kappa coefficient applied
on 198 subjects has reached 85.95% and 0.8046 in our ex-
periment, respectively. The performance of HyCLASS com-
pared favorably to previous work, and it could be integrated
with sleep evaluation or sleep diagnosis system in the
future.

Index Terms—Automatic sleep stage scoring, EEG, hy-
brid classifier, PSG, sleep stage transition.

[. INTRODUCTION

LEEP is one of the most important circadian rhythms of
S human physiological activities [1]. It has a sequence of
sleep stages related to autonomous nervous system functions
[2]. The quality and quantity of sleep impacts the performance
of many basic activities, such as learning, memorization, and
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concentration [3]. Better understanding of some sleep disorders,
such as insomnia and sleep apnea, relies on accurate detection
of sleep stages and the sleep cycle. In sleep studies for clinical
diagnosis and treatment of sleep disturbances, the first step is
identification of an individual’s sleep stages [4].

Traditionally, domain experts visually analyze and manu-
ally score the recorded over-night polysomnography (PSG) sig-
nals, such as electroencephalogram (EEG), electrocardiogram
(ECG), electromyography (EMG), electrooculogram (EOG),
pulse oximetry, and respiration. Normal practice divides the
entire sleep record into 30-second epochs and each epoch is
assigned a certain sleep stage according to some standard cri-
terions, such as Rechtschaffen and Kales (R&K) rules [5].
Such manual scoring method remains the standard practice
[6]. Based on R&K rules, sleep stages can be categorized by
wakefulness (Wake), rapid eye movement (REM), and non-
rapid eye movement (NREM). NREM can be categorized
into stages 1, 2, 3 and 4. Stages 3 and 4 are often com-
bined together and referred to deep sleep, or slow wave sleep
(SWS) [7].

However, manual stage scoring on PSG by domain experts
is time-consuming and labor-intensive. Each hour of sleep re-
quires the scoring of 120 epochs. The National Sleep Research
Resource (NSRR) [8], [9], which is a large-scale integrated
sleep data repository, consists of a collection of sleep research
data across the United States, with thousands of hours of sleep-
related data. Thus, developing a simple and reliable automatic
sleep stage scoring system can reduce significant manual work in
sleep studies. Several automatic sleep stage scoring approaches
have been proposed, including

1) time domain analysis [10], [11];
2) frequency domain analysis [4], [7], [12]-[14];
3) time-frequency analysis including wavelet transform
[15]-[18];
4) EEG non-linear analysis [7], [19], [20];
5) decision tree (DT) [14], [21];
6) artificial neural network (ANN) [12], [18];
7) fuzzy clustering [4];
8) k-nearest neighbor (KNN) [16], [22];
9) support vector machine (SVM) [7];
10) random forest [15];
11) hidden markov model (HMM) [23]-[25];
12) deep belief network (DBN) [13].

These methods reported accuracies ranging from 67% to 86%,
compared with experts’ score. However, most of the existing
work involved a small number of sleep records in dataset (less
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than 30 subjects), which may cause bias and low generaliz-
ability. Moreover, the existing work only focused on analyzing
signal features without considering the dynamic stage transition
information. Jaaskinen et al. [6] performed a study on the dis-
tribution of transitions from one stage to another using Markov
model, and they discovered a distribution difference between
normal and recovery sleep. Additionally, stage dynamic transi-
tion information reveals significant characteristics of the degree
of sleep continuity [26] and potentially provides valuable in-
sights for better understanding of the mechanisms of sleep stage
interactions [27]. The goal of this paper is to formulate and test
this main hypothesis at a large scale: the properties of dynamic
stage transition could improve the performance of sleep stage
scoring.

We propose a hybrid classifier HyCLASSS, for the first time,
leverages both signal and stage transition features of human
sleep for automatic identification of sleep stages. HyCLASSS
consists of two parts: random forest classifier and correction
rules. We first train a random forest classifier using three types
of features from EEG signal: time-domain features, frequency-
domain features, and non-linear features. We then construct and
apply the correction rules based on a proposed stage transition
graph representing the dynamic characteristic of sleep stage
transition. Combining both signal and stage transition features,
HyCLASSS can overcome the limitations of the previous meth-
ods and improve the performance. In this study, we divided
sleep stages into five categories: wakefulness (Wake), rapid eye
movement (REM), sleep stage 1 (S1), sleep stage 2 (S2), and
slow wave sleep (SWS). The overall accuracy, kappa coeffi-
cient [28], [29], precision, recall and Fl-score [30], [31] are
calculated to demonstrate the performance of HyCLASSS. The
overall accuracy and kappa coefficient of our approach applied
to 198 subjects (from two existing cohort studies) are 85.95%
and 0.8046, respectively, which compared favorable with pervi-
ous studies.

The rest of this paper is organized as follows. Section II
describes the background of automatic sleep stage scoring.
Section III describes the materials and methods. Section IV
discusses the results. Section V provides a brief comparison
with other related work and discusses future work.

Il. BACKGROUND

Different types of approach exist for time series classifica-
tion, such as raw data-based, model-based, and feature-based
[32]. For automatic sleep stage scoring, feature-based method
has been the most popular, involving two major steps: feature
extraction and classifier construction [33].

A. Feature Extraction From EEG Signal

For EEG signal feature extraction, most of the reported fea-
tures in previous studies are considered in this study. These
features can be grouped into three categories: 1) time-domain
features, 2) frequency-domain features, and 3) non-linear
features.

1) Time-Domain Features: Time-domain features include
statistical measures and Hjorth parameters [34]. Statistical

measures include mean, kurtosis, and skewness evaluating sta-
tistical characteristics [35]. The mean statistic measures the
central tendency of a probability distribution. Kurtosis feature
measures the tailedness of a probability distribution and de-
scribes the shape of a probability distribution. Skewness mea-
sures the asymmetry of a probability distribution. Hjorth pa-
rameters are generally used in feature extraction for EEG signal
analysis [36] including activity, mobility, and complexity [37].
The activity measures the variance of a time function. The mo-
bility infers to the mean frequency or the proportion of standard
deviation of the power spectrum. The complexity measures the
change in frequency.

2) Frequency-Domain Features: EEG signals of each sleep
stage have various behaviors in different frequency bands, and
the characteristics of different sleep stages in different frequency
bands are reported in many previous work (see [33] for a sur-
vey). Previous studies demonstrated that spectral power is an
important feature for automatic sleep stage scoring [15]. For in-
stance, the power of lower frequencies of EEG becomes stronger
with the increasing depth of sleep [38], the EEG signal of stage
1 has higher amplitude between 2-7 Hz. Stage 2 can be char-
acterized by the presence of sleep spindles band (12-14 Hz).
SWS is scored when there is low frequency (less than 2 Hz)
waves.

Additionally, the average signal amplitudes in specific fre-
quency bands by applying band pass filter, for instance, the
0.5-1.0 Hz band, was recorded as a feature.

3) Non-Linear Features: All the features mentioned above
are linear features. Non-linear and dynamical properties are also
important in representing the behaviors of EEG signal [19], such
as Shannon entropy and sample entropy. Various researchers in
the past [20], [39], [40] demonstrated their relevance for sleep
stage scoring and EEG characterization.

B. Random Forest Classifier

Random forest classifier is an ensemble learning method for
classification by constructing a group of decision trees. Its output
is the mode of the classes of the individual trees, and it has been
proposed for automatic sleep stage scoring [15]. The overall
output is determined by applying the object to each tree and
selecting the classification with the most weighted votes. The
weight of each tree is adjusted using misclassification and out-
of-bag measures.

A random forest classifier has three main properties [41]:
adaptability, scalability, and robustness. Other classifiers typi-
cally do not have all the three properties (see Table I).

Adaptability: A random forest classifier estimates the impor-
tance of variables and provides a way for tuning with additional
training data by assigning different weights for each decision
tree. In comparison, ANN is not as adaptable, since its param-
eters are sensitive to the data, and it is difficult for ANN to
be tuned to new datasets for constructing a well-learned neural
network [42].

Scalability: A random forest classifier can handle thousands
of input variables and work efficiently on large datasets. In
contrast, SVM has poor performance on large datasets since the
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TABLE |
PROPERTIES OF CLASSIFIERS

Adaptability Scalability ~ Robustness
KNN Yes No No
Decision tree Yes No No
ANN No No Yes
SVM Yes No Yes
Random forest Yes Yes Yes

speed of convergence can be low [43]. Similarly, KNN and ANN
have limited scalability and are not suitable for large datasets
due to work involved in training and testing. Although training
and testing for a single decision tree can be efficient, it comes
with the drawback of overfitting.

Robustness: A random forest classifier can balance error in
datasets with unbalanced class population. A single decision tree
classifier is sensitive to noise and outliers in the data as a slight
change in training data can result in a different tree. Therefore,
single decision tree’s performance with unbalanced training data
is not optimal [44]. KNN also cannot handle unbalanced training
dataset well since the classification result depends on the number
and the class label of nearest neighbors. KNN typically cannot
perform optimally for groups with less training data.

C. Sleep Stage Transition

Dynamic sleep stage transition describes the relationship be-
tween one sleep stage and another. Most existing sleep stage
classification studies only used polysomnography signals, such
as EEG and EMG, for feature extraction and ignored the
sleep stage transition features. In [26], the study proved that
sleep stage transition, beyond conventional PSG measures of
sleep, could be used to characterize sleep disruption. It also
indicated that sleep stage transition rates provided additional
valuable information of sleep continuity, and it was useful in
predicting specific outcomes. Stage transition provides addi-
tional useful information for classification and prediction; how-
ever, one of the challenges is that it is difficult to learn from
dataset.

In [14], the authors applied a smoothing process on clas-
sified results to improve their classifier’s performance, which
considers the continuity of a subject’s sleep. However, the
smoothing process only consisted of several rules manu-
ally extracted from dataset. In this paper, HyCLASSS solves
this problem through extracting sleep stage transition fea-
tures from sleep stage sequences automatically with a Markov
model.

[ll. MATERIALS AND METHODS

HyCLASSS consists of several steps, and its workflow is
shown in Fig. 1. Pre-processing the EEG signal starts the pro-
cess (Step 1), followed by feature extraction (Step 2). After
feature extraction, a hybrid classifier is trained and tested us-
ing extracted features (Step 3-4). All the steps are implemented
using Matlab (Mathworks, Inc.-USA).

Section II.D

3. Random
Forest
4. Correction
: Rules :

Section IIL.E

Hybrid Classifier

1. Pre- 2. Feature
EEG D
[ G Data Processing Extraction

Section IIl.B Section III.C

Sleep Stages

Fig. 1. HyCLASSS workflow.

A. Subjects

This study uses a dataset consists of subjects: 1) 116 sub-
jects (57 males and 59 females) selected from the Cleveland
Children’s Sleep and Health Study (CCSHS) [45], which was
focused on teenagers with an age range of 16-19 years old,
and 2) 82 subjects (35 males and 47 females) selected from the
Cleveland Family Study (CFES) [46], which was focused on sub-
jects with an age range of 6-88 years old. Actually, 84 subjects
were selected from CFS (totally 200 subjects); however, two
of them were removed since they have data quality issues due
to unlabeled parts of their signal. Both datasets are available at
National Sleep Research Resource.

The signal recordings were done for an entire night of sleep (8-
12 h). The EEG channel was recorded from the C4-A2 channel
sampled at 128 Hz. The sleep stages were manually scored in
epochs of 30s according to the Rechtschaffen and Kales (R&K)
standard. The sleep stages are divided into five categories: Wake,
REM, S1, S2, and SWS.

B. Pre-Processing

Muscle artifact, eye movements and eye blinking are the com-
mon physiological artifacts present in the EEG recordings, and
these artifacts make interpretations of the EEG signal difficult
[7]. In order to minimize residual artifacts presence, the signals
are filtered with a band pass filter with cutoff frequencies at
0.2 Hz and at 35 Hz.

C. Feature Extraction

We extracted 33 features including time-domain, frequency-
domain and non-linear features: 1) six time-domain features
(mean, kurtosis, skewness, activity, mobility, and complex-
ity), 2) spectral power and spectral amplitude of 11 frequency
bands (total 22 features), and 3) five non-linear features. Then
we removed three features: mean, mobility and complexity,
since they had similar values for each stage and were not
useful for classification; finally, 30 features were used in
HyCLASSS.

The spectral power in several significant frequency bands
is calculated by fast Fourier transforms (FFT) for each epoch,
and the total spectral power for each band is used as a fre-
quency feature. All frequency bands with their extraction details
are described in Table II. To represent non-linear characteris-
tics of EEG, five non-linear dynamics features are extracted,
namely, CO Complexity [47], [48], Shannon Entropy [49], [50],
the largest Lyapunov exponent [51], Spectral Entropy [52], [53],
and Kolmogorov Entropy [54].
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TABLE Il
EXTRACTED EEG FREQUENCY BANDS

Name Notation Hz Name Notation Hz

Slow- Spindle A_spindle [10.5, 14.5]
Oscillations  A_slwoc [0.5,2.0] Sigma A_sigma [12.0, 15.0]
SWA A_SWA [0.5,5.5] Slow Sigma A_slwsig [12.0,13.5]
Delta A_delta [1.0,4.0] Fast Sigma A_fstsig [13.5,15.0]
Theta A_theta [4.0, 8.0] Betal A_betal [15.0,20.0]
Alpha A_alpha [8.0, 10.5] Beta2 A_beta2 [20.0, 30.0]

Featurevamgs[ 0.7 [ 0.3 [ 0.9 [ 0.5 [ 0.1 [ 0.4 [ 0.6 [ 0.8 [ 0.2 [ 1.0 ‘
ﬁ Recording Index
Index 1 2 3 4 5 6 7 8 9 | 10

Feature values | 0.7 | 0.3 | 09 | 05 | 0.1 | 0.4 | 06 | 0.8 | 0.2 | 1.0

Jl Sorting according to feature values

Index 5 9 2 6 4 7 1 8 3 10

Featurevalues | 0.1 | 02 | 03 | 04 [ 05 | 06 | 07 | 08 | 09 | 1.0
ﬂ Apply 5-bin

Index 5 9 2 6 4 7 1 8 3 10

Feature values 1 1 2 2 3 3 4 4 5 5

ﬁ Obtain the final ranked feature

Index 1 2 3 4 5 6 7 8 9 10
Feature values | 4 2 5 3 1 2 3 4 1 5

Fig. 2.  An illustrative example of N-bin procedure (N = 5).

After feature extraction, unit norm is applied to normalize
features to 0-1 ranges to reduce the effects of individual vari-
ability. Additionally, for a subject, each feature vector of all
epochs is ranked by N-bin approach to reduce the complexity
and running time of building trees in random forest. The proce-
dure for N-bin approach is summarized in the following steps: 1)
record the index of original feature vector, and then sort the fea-
ture vector, 2) divide the feature vector into N bins of the same
size, 3) the elements in the same bin have the same rank level,
4) using recorded index to obtain the final ranked feature. Fig. 2
shows an example of this procedure of 5-bin. The selection of
N is described in Section IV-B.

D. Random Forest

As mentioned in Section II-B, a random forest classifier has
many advantages, such as adaptable, scalability and robustness.
We experimented with several machine learning classification,
including KNN, C4.5 decision tree and random forest, found
the random forest technique provided the best performance,
therefore, we chose it for HyCLASSS.

We used four processes to build the random forest [41]. First,
build each decision tree using method, such as classification and
regression tree, random trees, and C4.5.

Second, in the construction of each decision tree, nodes and
leaves are built by selecting a random number of features. This
process will minimize the correlation among the features and
decrease the sensitivity to noise; in this way, the accuracy of
classification will be increased [15].

Third, apply the technique of bootstrap (sampling with re-
placement) to sample the sub-training set for each tree from
the whole training data set. In other words, each tree is con-
structed using bootstrap sample technique, and the variance of
the model can be reduced without increasing the bias. It is easy
to obtain strongly correlated trees by training all trees with the
same training set, and bootstrap sampling is a good way to
de-correlate the trees. For a single decision tree, its prediction
results may be highly sensitive to the noise in its particular train-
ing set; however, in random forest, the average of all trees is less
sensitive to noise since the trees are more de-correlated. Addi-
tionally, during the training process of each tree, about two-third
of the sub-training set is used in the construction of the tree; the
remaining one-third part is used to test the classification per-
formance of the tree, and this is called “the out-of-bag error
estimate.” Therefore, it gets an unbiased estimate of the test set
error internally in random forest, and there is no need to use
further cross-validation [41].

Fourth, predict the classification for a new object O by weight-
ing the predictions from all the individual trees on O.

In this study, we used a random forest with 400 trees in
our classifier. Parameter selection is discussed in Section IV-B,
which shows that classification results varied little with respect
to parameters.

E. Construction of Correction Rules

As mentioned in Section II-C, sleep stage transition can pro-
vide additional information for classification. Intuitively, chang-
ing of sleep stages during night sleep should not be random, and
some transitions may not happen. For example, [REM, SWS,
S2] rarely occurs in sleep stage transition. To verify this intu-
ition, we designed a simple experiment to compare the sleep
stage sequence with a random sequence using Kolmogorov
complexity [55]-[57], which is a popular measurement to eval-
uate the randomness of sequence. The results indicate that the
stage sequence of whole night sleep is not a random sequence.
Section V describes the details.

[14] applied a smoothing process on classified results to im-
prove their classifier’s performance. It considered the temporal
contextual information and improved the continuity of a sub-
ject’s sleep stage scoring results. Some correction rules were
constructed according to the relationship among current epoch,
prior-epoch and posterior-epoch [14]. For example, three con-
secutive epochs of [S1, REM, S2] were replaced with the se-
quence [S1, S1, S2]. Similarly, consecutive epochs of [S1, S2,
S1] were replaced with the sequence [S1, S1, S1] [14], [58].
However, their correction rules only contain a few manually
defined rules and need more prior knowledge of the sleep study
and characteristics of the sleep dataset.

This begs the question: can we automatically build the general
correction rules based on the data itself with less prior knowl-
edge? Therefore, we provide a novel method to automatically
construct correction rules that only depend on the dataset using
a Markov model. Then, apply those rules on the output of the
random forest classifier. The Markov model was used to find
out the transition distribution from one stage to another [6] and
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Algorithm 1: Automatic Correction Rules Construction.

Procedure C'orrRes = AutoCorrRuleConstru(7, P,
PrePredict)
T': Transition Probability Matrix
P: Highest Probability Path
PrePredict: Pre-predicted sleep stage
sequence of a subject
Output CorrRes: Corrected predicted sleep stage
sequence
1: Len = length(C'orrRes);
2: whilei «— 1 to Len — 2 do

Input

3:  PrePredSubSeqs — CorrRes(i: i+ 2);
4: if i + 4 <= Len then
5: PrePredSubSeq; «— CorrRes(i : i + 4);
6 if PrePredSubSeqs; satisfy the input format of
Stable Rule then
7: CorrRes(i : i +4) < SmoothRule
(PrePredSubSegs);
8: end if
9: end if
10: if PrePredSubSeqs satisfy the input format of
Stable Rule then
11: CorrRes(i : i + 2) < SmoothRule
(PrePredSubSegs);

12: else if PrePredSubSeqs; satisfy the input format
of Transition Probability Based Rule then

13: CorrRes(i : i + 2) < TransProbRule
(PrePredSubSegs);
14: end if

15: end while

provided a compact and interpretable representation of the sleep
stages in a dynamic sleep process. The results are described in
Section I'V.

Our correction rules can be divided into two parts, namely,
Smoothing rule and Transition-probability-based rule. Each rule
represents different characteristics of sleep stage transition in
whole night sleep. Smoothing rule shows the stable sleep du-
ration and the property of sleep continuity; in other words, in
a stable phase of sleep, it is unlikely that the stage suddenly
changed. Transition-probability-based rule represents the most
probable transition between different stages, which reflects the
dynamic property of whole night sleep.

Algorithm 1 shows the pseudo-code of our automatic cor-
rection rules construction algorithm, the 7 and P are com-
puted by GetTransMatAndHighProbPath procedure (shown in
Algorithm 2). The subsequences are extracted from pre-
predicted stage sequence (i.e., the prediction from the random
forest classifier) using a sliding window, where the window size
is equal to three and five; i.e., each subsequence contains sleep
stages for three and five consecutive epochs, such as [Wake,
REM, S2] and [Wake, S3, S3, REM, S1]. In line 2-15, the
correction rules are applied to extracted subsequences. All the
correction rules are described as follows:

Algorithm 2: Calculating Transition Probability Matrix and
Highest Probability Path.

Procedure [T, P] = GetTransMatAndHighProbPath(S)

Input S Sleep stage sequence set of all subjects in
training set
Output 7" Transition Probability Matrix

P: Highest Probability Path
. StateNum = 5;
2: T = Markov(S, StateNum);
3: P = HighProbPath(7");
Procedure P = HighProbPath(T")
Input T': Transition Probability Matrix
Output  P: Highest Probability Path
m = size of T';
for i — 1 to m do
for j — 1 to m do
Gli,j) — —logs(T(i, ));
end for
end for
P = Dijkstra(G);

p—

SN R A AR

1) Smoothing Rule (Line 7 and 11): Because sleep is a smooth,
stable and continuous process [26], it is reasonable to assume
that the sleep stage should not change suddenly in 3-epoch sub-
sequence since each epoch only includes 30s of EEG signal. This
rule is used to correct the sudden stage change in pre-predicted
result. For example, the subsequence [Wake, S3, Wake] is cor-
rected to [Wake, Wake, Wake]. Additionally, according to our
observation, this rule can also be extended to 4-epoch subse-
quence and 5-epoch subsequence; for example, [Wake, S3, S3,
Wake, Wake] is corrected to [ Wake, Wake, Wake, Wake, Wake].
There is one notable thing that 4-epoch subsequence, such as
[Wake, S3, Wake, Wake] or [Wake, Wake, S3, Wake], is already
covered by 3-epoch subsequence. Therefore, the Smoothing rule
and its input format is generally summarized as following:
1) [A, B, A] is corrected to [A, A, A], and 2) [A, B, B, A,
Alis corrected to [A, A, A, A, A], where different symbols (like
“A” or “B”) represent the different categories of sleep stage.

2) Transition-Probability-Based Rule (Line 13): It is nec-
essary to find a reasonable way to change improbable sub-
sequences of pre-predicted sleep stages. For example, the
pre-predicted stage subsequence is [Wake, REM, S2]; however,
in real life, this sequence happens with quite low probability.
In this way, we replace low probability transitions with high
probability ones.

Algorithm 2 shows the pseudo-code of learning the stage tran-
sition probability matrix and selecting the highest probability
transition path between stages using the training set. The num-
ber of states is set to be 5 (line 1). Then, in line 2, an asymmetric
transition probability matrix 7 between sleep stages is computed
using the Markov model. The element 7{i, j) represents the tran-
sition probability from stage i to stage j. In 7, the self-transition
probability is set to be a very small number € (i.e., 7(i, i)=¢)
since the Smoothing rule solves the self-transition correction.
Fig. 3 shows the state-transition diagram of all five sleep stages.
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Fig. 3.

State-transition diagram of all sleep stages.

Based on the stage transition probability matrix, the highest
probability path P among each stage is computed using High-
ProbPath procedure in line 3, which is shown at the bottom of
Algorithm 2. In HighProbPath procedure, the transition proba-
bility matrix is transformed to a direct weighted graph G using
logarithmic function (line 5-9); each node in G represents the
sleep stage, and the edge between node i and node j means the
cost of transition. It is easy to prove that the shortest path in G is
equal to the highest transition probability path P in 7. Therefore,
in line 10, the Dijkstra algorithm [59] is applied to calculate the
shortest path of graph G.

Suppose [A, B, C] represents a pre-predicted 3-epoch subse-
quence as an input of Transition-probability-based rule, where
A, B and C are sleep stages of epoch. The corrected sequence
(CorrSeq) is generated using (1) shown at the bottom of this
page, where Hpath(A,B) means the highest transition probabil-
ity path between stage A and stage B, and prob([A,B]) means
the transition probability of the path [A, B] according to the
transition matrix. Three situations are defined:

1) if the highest transition probability path between stage A
and stage C is [A, B, C], then no rules are applied;

2) if situation 1) is not satisfied and the highest transition
probability path between stage A and stage B is [A, B], the find
the stage X with highest transition probability from B to X, and
the corrected sequence is [A, B, X];

3) if both situation 1) and 2) are not satisfied, two paths are
computed: [A, B, X] and [A, X, C]; then choose the path with
highest transition probability as the corrected sequence.

TABLE Il
CONFUSION MATRIX

Gold Standard

Wake REM S1 S2 SWS
Predicted
Wake Ci C1a Ci3  Ciy Cis
REM Ca Ca Caz3  Cay  Cys
S1 C3 Csa Cs3 Oz Cys
S2 Ci Cio Cy3  Cuy Cus
SWS Cs1 Csy  Cs3  Csy  Css

As mentioned before, the pre-predicted stage transition
[Wake, REM, S2] is rare in night sleep; Transition-probability-
based rule generates the stage transition [Wake, S1, S2] with
high probability to correct the improbable pre-predicted result;
it is more reasonable and consistence with reality [14].

F. Performance Evaluation

We evaluated the performance of the proposed approach using
the recall R (also known as sensitivity), precision P (positive
predictive value), F1-measure (F), and accuracy (AC) [30], [31].
For each stage category c, its precision (F,), recall (R.), and
Fl1-score (F.) are defined as:

p__ TR . _ TP 2P, xR,
© TP.+FP’° TP.+FN. ° P.+R

@3]

where T'P, is the number of true positives, F'P. is the number
of false positives, and F'N, is the number of false negatives.
The accuracy (AC) is defined as:

AC — Predict Results N GroundTruth
B length(GroundT'ruth)

3)

Additionally, Cohen’s kappa coefficient [28], [29] is also an
important measure to evaluate the performance of a classifier. It
is a more robust measure compared with simple percent agree-
ment calculation. Therefore, we also compute the Cohen’s kappa
coefficient to evaluate the performance of our approach as de-
scribed below.

The confusion matrix for classifying 5 sleep stages is
shown in Table III, and each row of the matrix represents the
instances in a predicted class while each column represents the
instances in actual class. The element C;; means the number of
common instances between predicted class i and actual class j;
for example, C» represents the number of instances predicted
as Wake, but actually belongs to REM. The kappa coefficient is

[A, B,C]
[A, B, X] where max
CorrSeq = Xe{sleep stage}
1= prob([A, B]) + max
max Xe{sleep stage}
max
Xe{sleep stage

{prob([B, X])}

Aprob((a.Z.x)} [

if hpath(A, C) = [A, B, (]
elseif hpath(A, B) = [A, B]

{prob(1B. X))} @
elseif hpath(A, B) # [A, B|
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Fig. 4. Extracted features with corresponding sleep stages. (a) Thirty

features of all epochs in a subject’s night sleep. The x-axis represents
indices of epochs, and y-axis represents thirty features. Colors represent
features’ value. (b) Corresponding sleep stages (1: Wake; 2: REM; 3: S1;
4: S2; 5: SWS).

TABLE IV-A
CONFUSION MATRIX OF RANDOM FOREST CLASSIFIER

Wake REM S1 S2 SWS
Wake 38505 2073 1257 2907 312
REM 1360 14587 1772 1977 1
S1 23 60 67 13 0
S2 1278 1654 779 41121 2701
SWS 54 12 2 2948 14583

defined as follows:
_P,-P. >iey Cii
9 _p = 5 b
Zi:l Zj:l C’ij

P Z?:l (Z?:1 Cij Z?:l Cji) @)
(Z?:l Z?:l Cij)2

where P, is the proportion of the observed agreements, and P,
is the proportion of agreements expected by chance [15]. The
interpretation of kappa coefficient has six levels of agreement:
1) poor (less than 0), 2) slight (0.00 to 0.20), 3) fair (0.21 to
0.40), 4) moderate (0.41 to 0.60), 5) substantial (0.61 to 0.80),
and 6) excellent (>0.8) [14].

IV. EXPERIMENTS AND RESULTS
A. Classification Results

We processed, filtered, and segmented the EEG signal into 30s
epochs and extracted thirty-three features int time domain, fre-
quency domain and non-linear fields. According to our analysis,
the mean, mobility and complexity were not used for classifica-
tion, since they had similar value for each stage. Fig. 4 shows
the extracted 30 features’ value with their corresponding sleep
stage for one subject with 10-bins; different sleep stages have
distinct feature patterns.

TABLE IV-B
PERFORMANCE OF RANDOM FOREST CLASSIFIER

Wake  REM S1 S2 SWS
Recall (%) 93.41 7933 01.73 8398  82.87
Precision (%) 8546 7405 41.10 86.51 82.86
F1-score (%) 89.26  76.60  03.31 8522  82.86

Accuracy: 83.59% Kappa: 0.7715

TABLE V-A
CONFUSION MATRIX OF HYCLASSS

Wake REM S1 S2 SWS
Wake 38450 1226 1300 1875 153
REM 985 15751 1454 1627 0
S1 109 70 284 174 4
S2 1587 1337 839 42925 2901
SWS 89 2 0 2365 14539
TABLE V-B
PERFORMANCE OF HYCLASSS
Wake REM S1 S2 SWS
Recall (%) 9327 8567 0733 87.66 82.62
Precision (%)  89.41 7948 4431 86.56  85.55
F1-score (%) 91.30 8246 1257 87.11  84.60

Accuracy: 85.95% Kappa: 0.8046

We randomly assigned subjects in the CCSHS and CFS
datasets to either a training set or a testing set. The resulting
training set included 96 subjects; the testing set contained the
remaining 102 subjects. We compared the output of the classi-
fier with the gold standard to evaluate its performance. In the
experiment, the number of N-bin and trees in random forest
were set to 100 and 400, respectively; Section IV-B discusses
the selection of these two parameters.

Table IV-A and I'V-B show the evaluation results for random
forest classifier without correction rules applied, including the
confusion matrix, F1-score, recall and precision of each stage
class, overall accuracy and kappa coefficient. The overall aver-
age accuracy was 83.59% for each stage class of all subjects.
Except for S1, the average recall was higher than 79%, the av-
erage precision was higher than 74%, and the average F1-score
was higher than 76%. It also indicated that the average kappa
was in substantial agreement level (0.7715). In contrast, Ta-
ble V-A and V-B show the evaluated results for random forest
classifier with correction rules applied, i.e., the HyCLASSS.
The overall accuracy increased to 85.95%; the average recall,
average precision and average F1-score for each stage class im-
proved significantly, especially for REM and S1. As mentioned
before, the signal features of REM and S1 are similar; in addi-
tion, the number of S1’s epochs was significantly smaller than
other stages’ epochs in a subject’s night sleep. This makes it
difficult to train a model with a high performance for S1 as S1
could be easily mistakenly classified as one of the other stages.
After using correction rules, the F1-score results for REM and
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Fig. 5. The sleep stage sequences of a subject in testing set: (a) the
automatic scoring without correction rules, (b) the automatic scoring with
HyCLASSS, and (c) gold standard. The x-axis represents the indices of
epochs, and y-axis represents 5 sleep stages (1: Wake; 2: REM; 3: S1;
4: 82; 5: SWS).

S1 were both increased by 5.86% (from 76.60% to 82.46%)
and 9.26% (from 3.31% to12.57%), respectively. Moreover, the
average kappa was increased from 0.7715 to 0.8046, which was
in excellent agreement level (>0.8).

Fig. 5 shows the stage sequences of one subject (No. 15 in
testing set) including the gold standard manually scored by the
expert, the automatic stage scoring without correction rules ap-
plied, and the automatic scoring with HyCLASSS. The resulting
stage sequence scored with HyCLASSS was much closer to the
gold standard after the rule correction.

B. Parameter Selection

Parameter selection is an important problem in classification
as changing parameters may impact significantly the perfor-
mance of the classifier. As mentioned before, there were two
parameters in HyCLASSS: the number of N-bin for feature
ranking and the number of trees in random forest. In order to
verify the sensitivity, we tested the performance using various
parameters ranges: 1) the number of trees was set to 400 and
the number of N-bin ranged form 10 to 2000; 2) the number of
N-bin was set to 100 and the number of trees ranged form 10
to 1000. Fig. 6 shows the results of experiments. The average
accuracy and kappa coefficient for different parameters only had
slightly changes. It indicated that HyCLASSS is not sensitive to
its parameters.

V. DISCUSSION

In this study, we proposed an automatic sleep stage classi-
fication and prediction approach based on the hybrid classifier
HyCLASSS. It combines a random forest classifier and correc-
tion rules learned from Markov model. The main idea of Hy-
CLASSS is to leverage both the advantages of signal features
and the sleep stage dynamic transition feature.
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Fig. 6. The average accuracy and kappa coefficient for different pa-
rameters, (a) number of N-bin and (b) number of trees in random forest.

TABLE VI
THE AVERAGE KOLMOGOROV COMPLEXITY OF STAGE SEQUENCES AND
RANDOM SEQUENCES (198 SUBJECTS)

Stage Sequences ~ Random Sequences

0.4203 (£0.081) 2.1972 (£0.025)

In Section III-E, we designed an experiment to compare the
sleep stage sequence with random sequence using Kolmogorov
complexity. The process of this experiment is summarized as
follows: for each subject, 1) calculate the Kolmogorov com-
plexity of stage sequence K,; 2) generate a random sequence
that has the same length with the stage sequence and calculate
its Kolmogorov complexity value K,. The results are shown
in Table VI. Higher value of Kolmogorov complexity indicates
higher randomness. The results indicate that the stage sequence
of whole night sleep is not a random sequence. Therefore, learn-
ing stage transition rules can provide more information and
knowledge about human sleep, and we showed that it improved
the performance of classifiers.

In previous studies, several approaches have been applied to
automated sleep stage scoring. Hae-Jeong et al. [12] used a
rule-based and artificial neural networks approach based on 58
features, which they extracted from EEG, EOG and EMG sig-
nals, to perform automatic sleep scoring. It had a performance
of 85.9% for 4 subjects. Masaaki et al. [21] proposed a method
using C4.5 decision tree and applied it to 6 features extracted
from EEG, EOG and EMG signals. Their accuracy was 81.4%
for 5 subjects. In 2009, a model based on Hilbert-Huang trans-
form, proposed by Li et al. [16], showed an average accuracy of
81.70% in 16 sleep records from a single EEG channel. In the
same year, Fraiwan et al. [17] proposed a classifier of regression
trees based on 54 extracted wavelet features from EEG, and re-
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TABLE VII
COMPARISON WITH PREVIOUS WORK

Author Year Signal Type Stage No. Method Feature No.  Dataset Size ~ Acc(%)
HaeJeong Park [12] 2000 EEG + EOG + EMG 6 Rule-based + ANN 58 4 subjects 85.90
Masaaki Hanaoka [21] 2001 EEG + EOG + EMG 7 C4.5 decision tree 6 5 subjects 81.40
Luay A. Fraiwan [17] 2009 EEG 6 Wavelet + Regression tree 20 936 epochs 74.00
Yi Li[16] 2009 EEG 4 Hilbert-Huang transform + KNN 6 16 subjects 81.70
Han G. Jo [4] 2010 EEG + EOG + EMG 4 Fuzzy classifier 5 4 subjects 84.60
Sheng-Fu Liang [14] 2012 EEG + EOG + EMG 5 Rule-based decision tree 12 17 subjects 86.70
B. Koley [7] 2012 EEG 5 SVM feature selection + SVM 21 28 subjects 85.70
Luay Fraiwan [15] 2012 EEG 5 Wavelet + Random forest 7 16 subjects 83.00
Martin Larigkvist [13] 2012 EEG + EOG + EMG 5 Deep Belief Networks 0 25 subjects 64.70
Pan, S.-T. [25] 2012 EEG + EOG + EMG 5 Discrete Hidden Markov Model 13 20 subjects 85.30
Jose Luis Rodrguez-Sotelo [20] 2014 EEG 5 EEG entropy measures + Unsupervised classification 13 22 subjects 80.00
Our Approach EEG 5 HyCLASSS 30 198 subjects  85.95

ported a 74% accuracy for all 936 epochs. Han G. Jo et al. [4]
proposed a fuzzy classifier based on 5 features extracted from
EEG, EOG and EMG signals that had an accuracy of 84.6% for
5 subjects. Sheng Fu et al. [14] proposed a rule-based decision
tree approach in 2012 based on 12 EEG, EOG and EMG signal
features which showed an accuracy of 86.7% with 17 subjects.
In the same year, Koley e al. [7] built a model based on SVM
feature selection and SVM classifier. 39 features were extracted
from EEG signals, and the model was applied to classifying
28 subjects’ sleep records; their final accuracy was 85.7%. Frai-
wan et al. [15] proposed a method using random forest based on
7 EEG signal wavelet features, and their average accuracy and
kappa coefficient were 83% and 0.76 for 16 subjects. Langkvist
et al. [13] proposed a method with Deep Belief Network based
on original EEG signals (no extracted features), and their aver-
age accuracy was 67.4% for 25 subjects. Pan et al. [25] proposed
a method using Discrete Hidden Markov Model and applied to
13 features extracted from EEG, EOG and EMG signals; their
accuracy was 85.3% for 20 subjects. Rodrguez-Sotelo et al.
[20] built a model based on unsupervised feature classifica-
tion algorithms with 13 EEG entropy measures, the model was
applied to classify 22 subjects’ sleep records and had an accu-
racy of 80%. All the studies mentioned above are summarized
in Table VII.

In our experiment, the random forest classifier turned out
to be a useful tool for classifying sleep stages with an accu-
racy of 83.59%, and a kappa coefficient of 0.7715, which in-
dicates a substantial agreement. A group of correction rules,
learned from Markov model, was applied to the classification
output of this random forest. This improved overall agreement
of the HyCLASSS to 85.95%. Additionally, the average Co-
hen’s kappa coefficient for 102 testing subjects was 0.8046 and
represents an excellent agreement with the gold standard. Com-
pared with previous works, HyCLASSS was applied to a much
larger dataset, which included 198 subjects, and our results in-
dicate that the performance of HyCLASS compared favorably
to previous work for using a single EEG channel. Additionally,
another advantage of HyCLASSS is that it is insensitive to the
changing of parameters.

For computational complexity, the overall cost of feature ex-
traction is O(n?), where n is the number of data points in

an EEG recording. This is because the non-linear dynamics
features such as largest Lyapunov exponent and Kolmogorov
entropy have complexity of O(n?) [60], [61]. When using the
random forest classifier method, building a single tree has time
complexity O(mnlog(n)), where n is the number of instances
and m is the number of attributes. The total time complex-
ity for building a random forest is therefore O(pmnlog(n))
with p trees [62]. Our experiments were performed on a com-
puter with Intel Core i7 (3.1 GHz) CPU and 16 GB mem-
ory. For feature extraction, our average computational time
was 4,374 seconds per subject. For classification, the training
and testing time for all subjects were 779 and 795 seconds,
respectively.

Another significance of our approach is that, to the best of
our knowledge, this is the first time both signal and stage transi-
tion features of sleep have been applied to automatic sleep stage
scoring. HyCLASSS provides a new aspect on scoring sleep
data. These two kinds of features reflect the different character-
istics of sleep; one represents the signal changes of each stage,
for example, SWS has more lower frequency components. The
other stage transition features show the stage dynamic changes
during the night sleep. For example, it is improbable to transi-
tion from REM to SWS directly, and there has to be one or more
transition stages between them, like S2. The major difference
between whole night sleep stage scoring and the regular clas-
sification problem is that the label sequence of sleep stages is
another valuable source of information, since the stage sequence
is not a random sequence, and there are underline relationships
between stages. These relationships are useful for discovering
new mechanisms of sleep regulation and its evolution, and it
may provide help in predicting specific outcomes [27].

Our study has some limitations: 1) only signals from a single
EEG channel were used in classification, 2) the correction rules
may not be suitable for all situations, 3) we have not considered
the effects of diseases, such as narcolepsy, insomnia and sleep
disorder, on their influences on classification. In future work, we
will focus on sleep stage scoring using multiple PSG signals,
such as EOG and EMG, to improve the performance of our
approach. Moreover, we will design more elegant algorithms
for analyzing and classifying sleep data. Additionally, we will
apply our approach to more datasets, especially to the datasets
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of different sleep diseases studies, which can be obtained from
the NSRR website [9].

VI. CONCLUSION

A hybrid classifier (HyCLASSS), combining the benefits of
random forest classifier and correction rules has been proposed
for automatic sleep stage scoring with single channel EEG
recordings. Several features from temporal, frequency and non-
linear analyses provided valuable information to characterize
sleep stages. Random forest classifiers were shown to be a use-
ful tool to obtain high accuracy sleep stage classification from
EEG recordings. The automatically constructed correction rules,
which were based on the dynamic stage transition feature, sig-
nificantly improved the performance of the classifier. The results
indicated an excellent agreement between automatic scoring and
the gold standard.
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