26 research outputs found

    Search Rank Fraud De-Anonymization in Online Systems

    Full text link
    We introduce the fraud de-anonymization problem, that goes beyond fraud detection, to unmask the human masterminds responsible for posting search rank fraud in online systems. We collect and study search rank fraud data from Upwork, and survey the capabilities and behaviors of 58 search rank fraudsters recruited from 6 crowdsourcing sites. We propose Dolos, a fraud de-anonymization system that leverages traits and behaviors extracted from these studies, to attribute detected fraud to crowdsourcing site fraudsters, thus to real identities and bank accounts. We introduce MCDense, a min-cut dense component detection algorithm to uncover groups of user accounts controlled by different fraudsters, and leverage stylometry and deep learning to attribute them to crowdsourcing site profiles. Dolos correctly identified the owners of 95% of fraudster-controlled communities, and uncovered fraudsters who promoted as many as 97.5% of fraud apps we collected from Google Play. When evaluated on 13,087 apps (820,760 reviews), which we monitored over more than 6 months, Dolos identified 1,056 apps with suspicious reviewer groups. We report orthogonal evidence of their fraud, including fraud duplicates and fraud re-posts.Comment: The 29Th ACM Conference on Hypertext and Social Media, July 201

    Networks: A study in Analysis and Design

    Get PDF
    In this dissertation, we will look at two fundamental aspects of Networks: Network Analysis and Network Design. In part A, we look at Network Analysis area of the dissertation which involves finding the densest subgraph in each graph. The densest subgraph extraction problem is fundamentally a non-linear optimization problem. Nevertheless, it can be solved in polynomial time by an exact algorithm based on the iterative solution of a series of max-flow sub-problems. To approach graphs with millions of vertices and edges, one must resort to heuristic algorithms. We provide an efficient implementation of a greedy heuristic from the literature that is extremely fast and has some nice theoretical properties. An extensive computational analysis shows that the proposed heuristic algorithm proved very effective on many test instances, often providing either the optimal solution or near-optimal solution within short computing times. In part-B, we discuss Network design, which is a cornerstone of mathematical optimization, is about defining the main characteristics of a network satisfying requirements on connectivity, capacity, and level-of-service. In multi-commodity network design, one is required to design a network minimizing the installation cost of its arcs and the operational cost to serve a set of point-to-point connections. This prototypical problem was recently enriched by additional constraints imposing that each origin-destination of a connection is served by a single path satisfying one or more level-of-service requirements, thus defining the Network Design with Service Requirements. These constraints are crucial, e.g., in telecommunications and computer networks, in order to ensure reliable and low-latency communication. We provide a new formulation for the problem, where variables are associated with paths satisfying the end-to-end service requirements. A fast algorithm for enumerating all the exponentially-many feasible paths and, when this is not viable, a column generation scheme that is embedded into a branch-and-cut-and-price algorithm is provided

    COMMUNITY DETECTION IN GRAPHS

    Get PDF
    Thesis (Ph.D.) - Indiana University, Luddy School of Informatics, Computing, and Engineering/University Graduate School, 2020Community detection has always been one of the fundamental research topics in graph mining. As a type of unsupervised or semi-supervised approach, community detection aims to explore node high-order closeness by leveraging graph topological structure. By grouping similar nodes or edges into the same community while separating dissimilar ones apart into different communities, graph structure can be revealed in a coarser resolution. It can be beneficial for numerous applications such as user shopping recommendation and advertisement in e-commerce, protein-protein interaction prediction in the bioinformatics, and literature recommendation or scholar collaboration in citation analysis. However, identifying communities is an ill-defined problem. Due to the No Free Lunch theorem [1], there is neither gold standard to represent perfect community partition nor universal methods that are able to detect satisfied communities for all tasks under various types of graphs. To have a global view of this research topic, I summarize state-of-art community detection methods by categorizing them based on graph types, research tasks and methodology frameworks. As academic exploration on community detection grows rapidly in recent years, I hereby particularly focus on the state-of-art works published in the latest decade, which may leave out some classic models published decades ago. Meanwhile, three subtle community detection tasks are proposed and assessed in this dissertation as well. First, apart from general models which consider only graph structures, personalized community detection considers user need as auxiliary information to guide community detection. In the end, there will be fine-grained communities for nodes better matching user needs while coarser-resolution communities for the rest of less relevant nodes. Second, graphs always suffer from the sparse connectivity issue. Leveraging conventional models directly on such graphs may hugely distort the quality of generate communities. To tackle such a problem, cross-graph techniques are involved to propagate external graph information as a support for target graph community detection. Third, graph community structure supports a natural language processing (NLP) task to depict node intrinsic characteristics by generating node summarizations via a text generative model. The contribution of this dissertation is threefold. First, a decent amount of researches are reviewed and summarized under a well-defined taxonomy. Existing works about methods, evaluation and applications are all addressed in the literature review. Second, three novel community detection tasks are demonstrated and associated models are proposed and evaluated by comparing with state-of-art baselines under various datasets. Third, the limitations of current works are pointed out and future research tracks with potentials are discussed as well

    Latent Representation and Sampling in Network: Application in Text Mining and Biology.

    Get PDF
    In classical machine learning, hand-designed features are used for learning a mapping from raw data. However, human involvement in feature design makes the process expensive. Representation learning aims to learn abstract features directly from data without direct human involvement. Raw data can be of various forms. Network is one form of data that encodes relational structure in many real-world domains. Therefore, learning abstract features for network units is an important task. In this dissertation, we propose models for incorporating temporal information given as a collection of networks from subsequent time-stamps. The primary objective of our models is to learn a better abstract feature representation of nodes and edges in an evolving network. We show that the temporal information in the abstract feature improves the performance of link prediction task substantially. Besides applying to the network data, we also employ our models to incorporate extra-sentential information in the text domain for learning better representation of sentences. We build a context network of sentences to capture extra-sentential information. This information in abstract feature representation of sentences improves various text-mining tasks substantially over a set of baseline methods. A problem with the abstract features that we learn is that they lack interpretability. In real-life applications on network data, for some tasks, it is crucial to learn interpretable features in the form of graphical structures. For this we need to mine important graphical structures along with their frequency statistics from the input dataset. However, exact algorithms for these tasks are computationally expensive, so scalable algorithms are of urgent need. To overcome this challenge, we provide efficient sampling algorithms for mining higher-order structures from network(s). We show that our sampling-based algorithms are scalable. They are also superior to a set of baseline algorithms in terms of retrieving important graphical sub-structures, and collecting their frequency statistics. Finally, we show that we can use these frequent subgraph statistics and structures as features in various real-life applications. We show one application in biology and another in security. In both cases, we show that the structures and their statistics significantly improve the performance of knowledge discovery tasks in these domains

    Location Analytics for Location-Based Social Networks

    Get PDF

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    Multi-faceted analytics of social events: Identification, representation and monitoring

    Get PDF
    corecore