119 research outputs found

    On the Convergence of Space-Time Discontinuous Galerkin Schemes for Scalar Conservation Laws

    Full text link
    We prove convergence of a class of space-time discontinuous Galerkin schemes for scalar hyperbolic conservation laws. Convergence to the unique entropy solution is shown for all orders of polynomial approximation, provided strictly monotone flux functions and a suitable shock-capturing operator are used. The main improvement, compared to previously published results of similar scope, is that no streamline-diffusion stabilization is used. This is the way discontinuous Galerkin schemes were originally proposed, and are most often used in practice

    Discontinuous Galerkin Methods for Second-Order Elliptic PDE with Low-Regularity Solutions

    Get PDF
    In this paper we derive an a priori error analysis for interior penalty discontinuous Galerkin finite element discretizations of the Poisson equation with exact solution inW 2,p , p∈(1,2]. We show that the DGFEM converges at an optimal algebraic rate with respect to the number of degrees of freedo

    First order least squares method with weakly imposed boundary condition for convection dominated diffusion problems

    Full text link
    We present and analyze a first order least squares method for convection dominated diffusion problems, which provides robust L2 a priori error estimate for the scalar variable even if the given data f in L2 space. The novel theoretical approach is to rewrite the method in the framework of discontinuous Petrov - Galerkin (DPG) method, and then show numerical stability by using a key equation discovered by J. Gopalakrishnan and W. Qiu [Math. Comp. 83(2014), pp. 537-552]. This new approach gives an alternative way to do numerical analysis for least squares methods for a large class of differential equations. We also show that the condition number of the global matrix is independent of the diffusion coefficient. A key feature of the method is that there is no stabilization parameter chosen empirically. In addition, Dirichlet boundary condition is weakly imposed. Numerical experiments verify our theoretical results and, in particular, show our way of weakly imposing Dirichlet boundary condition is essential to the design of least squares methods - numerical solutions on subdomains away from interior layers or boundary layers have remarkable accuracy even on coarse meshes, which are unstructured quasi-uniform
    • …
    corecore