7 research outputs found

    On the Use of Parsing for Named Entity Recognition

    Get PDF
    [Abstract] Parsing is a core natural language processing technique that can be used to obtain the structure underlying sentences in human languages. Named entity recognition (NER) is the task of identifying the entities that appear in a text. NER is a challenging natural language processing task that is essential to extract knowledge from texts in multiple domains, ranging from financial to medical. It is intuitive that the structure of a text can be helpful to determine whether or not a certain portion of it is an entity and if so, to establish its concrete limits. However, parsing has been a relatively little-used technique in NER systems, since most of them have chosen to consider shallow approaches to deal with text. In this work, we study the characteristics of NER, a task that is far from being solved despite its long history; we analyze the latest advances in parsing that make its use advisable in NER settings; we review the different approaches to NER that make use of syntactic information; and we propose a new way of using parsing in NER based on casting parsing itself as a sequence labeling task.Xunta de Galicia; ED431C 2020/11Xunta de Galicia; ED431G 2019/01This work has been funded by MINECO, AEI and FEDER of UE through the ANSWER-ASAP project (TIN2017-85160-C2-1-R); and by Xunta de Galicia through a Competitive Reference Group grant (ED431C 2020/11). CITIC, as Research Center of the Galician University System, is funded by the Conseller铆a de Educaci贸n, Universidade e Formaci贸n Profesional of the Xunta de Galicia through the European Regional Development Fund (ERDF/FEDER) with 80%, the Galicia ERDF 2014-20 Operational Programme, and the remaining 20% from the Secretar铆a Xeral de Universidades (Ref. ED431G 2019/01). Carlos G贸mez-Rodr铆guez has also received funding from the European Research Council (ERC), under the European Union鈥檚 Horizon 2020 research and innovation programme (FASTPARSE, Grant No. 714150)

    Discontinuous Constituent Parsing with Pointer Networks

    No full text
    One of the most complex syntactic representations used in computational linguistics and NLP are discontinuous constituent trees, crucial for representing all grammatical phenomena of languages such as German. Recent advances in dependency parsing have shown that Pointer Networks excel in efficiently parsing syntactic relations between words in a sentence. This kind of sequence-to-sequence models achieve outstanding accuracies in building non-projective dependency trees, but its potential has not been proved yet on a more difficult task. We propose a novel neural network architecture that, by means of Pointer Networks, is able to generate the most accurate discontinuous constituent representations to date, even without the need of Part-of-Speech tagging information. To do so, we internally model discontinuous constituent structures as augmented non-projective dependency structures. The proposed approach achieves state-of-the-art results on the two widely-used NEGRA and TIGER benchmarks, outperforming previous work by a wide margin

    Discontinuous Constituent Parsing with Pointer Networks

    No full text
    corecore