5,484 research outputs found

    The National Criteria for Evacuation Decision-Making in Nursing Homes

    Get PDF
    Explains the key factors nursing home administrators and healthcare workers must consider in deciding whether to evacuate patients or to shelter them in place during natural disasters. Includes guidelines for drawing up emergency management plans

    Laboratory and on-site tests for rapid runway repair

    Get PDF
    The attention to rapid pavement repair has grown fast in recent decades: this topic is strategic for the airport management process for civil purposes and peacekeeping missions. This work presents the results of laboratory and on-site tests for rapid runway repair, in order to analyse and compare technical and mechanical performances of 12 different materials currently used in airport. The study focuses on site repairs, a technique adopted most frequently than repairs with modular elements. After describing mechanical and physical properties of the examined materials (2 bituminous emulsions, 5 cement mortars, 4 cold bituminous mixtures and 1 expanding resin), the study presents the results of carried out mechanical tests. The results demonstrate that the best performing material is a one-component fast setting and hardening cement mortar with graded aggregates. This material allows the runway reopening 6 h after the work. A cold bituminous mixture (bicomponent premixed cold asphalt with water as catalyst) and the ordinary cement concrete allow the reopening to traffic after 18 h, but both ensure a lower service life (1000 coverages) than the cement mortar (10,000 coverages). The obtained results include important information both laboratory level and field, and they could be used by airport management bodies and road agencies when scheduling and evaluating pavement repairs

    International Terrorism, International Trade, and Borders

    Get PDF
    This paper shows that terrorism reduces bilateral trade flows, in real terms, by raising trading costs and hardening borders. Countries sharing a common land border and suffering from terrorism trade much less than neighboring or distant countries that are free of terrorism. The impact of terrorism on bilateral trade declines as distance between trading partners increases. This result suggests that terrorism redirects some trade from close to more distant countries. Our findings are robust in the presence of a variety of other calamities such as natural disasters or financial crises.financial crisis, natural disaster, trade gravity model, transaction cost

    The Need for Disaster Recovery and Incident Response: Understanding Disaster Recovery for Natural Disasters Versus Cyber-Attacks

    Get PDF
    Disaster recovery and incident response has become a necessity in today’s technological driven business world. A significant amount of consumer information is put into businesses information systems with the expectation to protect their private and financial data. This discussion addresses the importance of why organizations need effective disaster recovery and contingency planning. A foundation of knowledge is built through the understanding of the statistical and practical implications of disaster recovery and contingency planning. The practical implications will be understood through two separate case studies. Each case study is unique in that one addresses disaster recovery when facing a natural disaster, while the other is a cyber-attack of man-made origin. This discussion will allow conclusions to be drawn on why there is a need to plan for natural disasters and cyber-attacks separately. This will be accomplished through analyzing the case studies and their statistical properties

    Flood Disaster Resilient Bridge Structures For Sustainable Bridge Management Systems

    Get PDF
    Extreme weather events are occurring at an increasing ferocity and frequency. Floods are the most comand damaging natural disaster. More than 4,400 occurrences of flood disasters have been reported globally between 1900 and 2016. As a result, around seven million people were killed and millions more were displaced. Climate impacts are expected to intensify weather related flooding events, and sea level rise expected worldwide will increase the risk of coastal disasters. Transportation infrastructure, vital to the economy and society of every country, is especially prone to the inland and coastal floods. Bridge structures are under the constant threat of these natural disasters. Superstructures can be washed away due to lateral forces generated by floodwater. Floodwater can also accelerate scouring around bridge piers, which often contributes to bridge failures. This research used the results of an extreme flood simulation conducted by the Center for Advanced Infrastructure Technology at the University of Mississippi. A flood inundation model was implemented for an extreme flood scenario at a floodplain site of Little Tallahatchie River in Northern Mississippi that featured surface transportation corridor sites and other infrastructure assets. Geospatial analysis of flood inundation mapping and simulation results shothat total flood inundation covered an area of 22.46 sq mi2 (58.16 sq km2) in the floodplain, where maximum floodwater depth reached up to 34.19 ft (10.42 m) within the inundation area. The results of the extreme flood simulation were used for assessing structural integrity of a bridge structure subject to lateral floodwater forces, with primary focus on the superstructure. A Three Dimensional-Finite Element model of US-51 Highway bridge, located in the floodplain site, was developed for flood impact analysis considering bridge girder-deck superstructure, bearings, pile caps and piers. The numerical results of finite element simulation shothat the bridge superstructure displaced 2.42 m under the lateral hydrodynamic force of floodwater. The dowel bars inserted at the bottom of each girder end through bearing to the top end of pile cap, failed in shear against lateral floodwater forces. This would lead to the failure of US-51 Highway bridge superstructure if an extreme flood event occurs in real life. A framework for structural integrity assessment of bridge structures is presented with Flood Resiliency Index. Recommendations for design enhancements and hardening of bridges are discussed for flood disaster resilience. An enhanced geospatial decision support system is recommended considering “vertical underclearance” criteria for bridge superstructure height above the channel and “flood probability” related to flood occurrence in 10, 50, 100, 500 and 1,000 years. These flood resilience parameters are missing from the traditional bridge management system (BMS) framework. Enhancing the current practice of BMS is proposed using optimization based prioritization of flood disaster vulnerable bridges, which considers vertical underclearance criteria, flood disaster risk probability and life cycle cost analysis. For this purpose, a Flood Vulnerability Rating (FVR) is proposed on a scale of 1 (catastrophic risk) to 6 (very low risk). The FVR scale was used for a case study of 270 bridges on major rivers in the state of Mississippi, which were analyzed using an optimization objective function to maximize benefits considering reconstruction/hardening costs and indirect benefits (cost avoidance from traffic disruption and economic loss related to bridge failure). Based on the present-worth life cycle analysis, total life cycle costs for the agency’s pre-planned bridge hardening for flood resilience was 59.3% less than the case of no hardening of the same bridge. This dissertation advances flood risk assessment and resilience management methodologies for transportation infrastructure in the United States and across the globe

    Remotely piloted aircraft systems and a wireless sensors network for radiological accidents

    Get PDF
    In critical radiological situations, the real time information that we could get from the disaster area becomes of great importance. However, communication systems could be affected after a radiological accident. The proposed network in this research consists of distributed sensors in charge of collecting radiological data and ground vehicles that are sent to the nuclear plant at the moment of the accident to sense environmental and radiological information. Afterwards, data would be analyzed in the control center. Collected data by sensors and ground vehicles would be delivered to a control center using Remotely Piloted Aircraft Systems (RPAS) as a message carrier. We analyze the pairwise contacts, as well as visiting times, data collection, capacity of the links, size of the transmission window of the sensors, and so forth. All this calculus was made analytically and compared via network simulations.Peer ReviewedPostprint (published version
    • 

    corecore