131 research outputs found

    Cubical Cohomology Ring of 3D Photographs

    Get PDF
    Cohomology and cohomology ring of three-dimensional (3D) objects are topological invariants that characterize holes and their relations. Cohomology ring has been traditionally computed on simplicial complexes. Nevertheless, cubical complexes deal directly with the voxels in 3D images, no additional triangulation is necessary, facilitating efficient algorithms for the computation of topological invariants in the image context. In this paper, we present formulas to directly compute the cohomology ring of 3D cubical complexes without making use of any additional triangulation. Starting from a cubical complex QQ that represents a 3D binary-valued digital picture whose foreground has one connected component, we compute first the cohomological information on the boundary of the object, Q\partial Q by an incremental technique; then, using a face reduction algorithm, we compute it on the whole object; finally, applying the mentioned formulas, the cohomology ring is computed from such information

    Irregular graph pyramids and representative cocycles of cohomology generators

    Get PDF
    Structural pattern recognition describes and classifies data based on the relationships of features and parts. Topological invariants, like the Euler number, characterize the structure of objects of any dimension. Cohomology can provide more refined algebraic invariants to a topological space than does homology. It assigns ‘quantities’ to the chains used in homology to characterize holes of any dimension. Graph pyramids can be used to describe subdivisions of the same object at multiple levels of detail. This paper presents cohomology in the context of structural pattern recognition and introduces an algorithm to efficiently compute representative cocycles (the basic elements of cohomology) in 2D using a graph pyramid. Extension to nD and application in the context of pattern recognition are discussed

    Homological tree-based strategies for image analysis

    Get PDF
    Homological characteristics of digital objects can be obtained in a straightforward manner computing an algebraic map φ over a finite cell complex K (with coefficients in the finite field F2={0,1}) which represents the digital object [9]. Computable homological information includes the Euler characteristic, homology generators and representative cycles, higher (co)homology operations, etc. This algebraic map φ is described in combinatorial terms using a mixed three-level forest. Different strategies changing only two parameters of this algorithm for computing φ are presented. Each one of those strategies gives rise to different maps, although all of them provides the same homological information for K. For example, tree-based structures useful in image analysis like topological skeletons and pyramids can be obtained as subgraphs of this forest

    Removal operations in nD generalized maps for efficient homology computation

    Get PDF
    In this paper, we present an efficient way for computing homology generators of nD generalized maps. The algorithm proceeds in two steps: (1) cell removals reduces the number of cells while preserving homology; (2) homology generator computation is performed on the reduced object by reducing incidence matrices into their Smith-Agoston normal form. In this paper, we provide a definition of cells that can be removed while preserving homology. Some results on 2D and 3D homology generators computation are presented

    Open Issues and Chances for Topological Pyramids

    Get PDF
    High resolution image data require a huge amount of computational resources. Image pyramids have shown high performance and flexibility to reduce the amount of data while preserving the most relevant pieces of information, and still allowing fast access to those data that have been considered less important before. They are able to preserve an existing topological structure (Euler number, homology generators) when the spatial partitioning of the data is known at the time of construction. In order to focus on the topological aspects let us call this class of pyramids “topological pyramids”. We consider here four open problems, under the topological pyramids context: The minimality problem of volumes representation, the “contact”-relation representation, the orientation of gravity and time dimensions and the integration of different modalities as different topologies.Austrian Science Fund P20134-N13Junta de Andalucía FQM–296Junta de Andalucía PO6-TIC-0226

    Connectivity calculus of fractal polyhedrons

    Get PDF
    The paper analyzes the connectivity information (more precisely, numbers of tunnels and their homological (co)cycle classification) of fractal polyhedra. Homology chain contractions and its combinatorial counterparts, called homological spanning forest (HSF), are presented here as an useful topological tool, which codifies such information and provides an hierarchical directed graph-based representation of the initial polyhedra. The Menger sponge and the Sierpiński pyramid are presented as examples of these computational algebraic topological techniques and results focussing on the number of tunnels for any level of recursion are given. Experiments, performed on synthetic and real image data, demonstrate the applicability of the obtained results. The techniques introduced here are tailored to self-similar discrete sets and exploit homology notions from a representational point of view. Nevertheless, the underlying concepts apply to general cell complexes and digital images and are suitable for progressing in the computation of advanced algebraic topological information of 3-dimensional objects

    Chain Homotopies for Object Topological Representations

    Get PDF
    This paper presents a set of tools to compute topological information of simplicial complexes, tools that are applicable to extract topological information from digital pictures. A simplicial complex is encoded in a (non-unique) algebraic-topological format called AM-model. An AM-model for a given object K is determined by a concrete chain homotopy and it provides, in particular, integer (co)homology generators of K and representative (co)cycles of these generators. An algorithm for computing an AM-model and the cohomological invariant HB1 (derived from the rank of the cohomology ring) with integer coefficients for a finite simplicial complex in any dimension is designed here. A concept of generators which are "nicely" representative cycles is also presented. Moreover, we extend the definition of AM-models to 3D binary digital images and we design algorithms to update the AM-model information after voxel set operations (union, intersection, difference and inverse)

    Advanced homology computation of digital volumes via cell complexes

    Get PDF
    Given a 3D binary voxel-based digital object V, an algorithm for computing homological information for V via a polyhedral cell complex is designed. By homological information we understand not only Betti numbers, representative cycles of homology classes and homological classification of cycles but also the computation of homology numbers related additional algebraic structures defined on homology (coproduct in homology, product in cohomology, (co)homology operations,...). The algorithm is mainly based on the following facts: a) a local 3D-polyhedrization of any 2×2×2 configuration of mutually 26-adjacent black voxels providing a coherent cell complex at global level; b) a description of the homology of a digital volume as an algebraic-gradient vector field on the cell complex (see Discrete Morse Theory [5], AT-model method [7,5]). Saving this vector field, we go further obtaining homological information at no extra time processing cost

    Cup products on polyhedral approximations of 3D digital images

    Get PDF
    Let I be a 3D digital image, and let Q(I) be the associated cubical complex. In this paper we show how to simplify the combinatorial structure of Q(I) and obtain a homeomorphic cellular complex P(I) with fewer cells. We introduce formulas for a diagonal approximation on a general polygon and use it to compute cup products on the cohomology H *(P(I)). The cup product encodes important geometrical information not captured by the cohomology groups. Consequently, the ring structure of H *(P(I)) is a finer topological invariant. The algorithm proposed here can be applied to compute cup products on any polyhedral approximation of an object embedded in 3-space
    corecore