144 research outputs found

    Outdoor to Indoor Penetration Loss at 28 GHz for Fixed Wireless Access

    Full text link
    This paper present the results from a 28 GHz channel sounding campaign performed to investigate the effects of outdoor to indoor penetration on the wireless propagation channel characteristics for an urban microcell in a fixed wireless access scenario. The measurements are performed with a real-time channel sounder, which can measure path loss up to 169 dB, and equipped with phased array antennas that allows electrical beam steering for directionally resolved measurements in dynamic environments. Thanks to the short measurement time and the excellent phase stability of the system, we obtain both directional and omnidirectional channel power delay profiles without any delay uncertainty. For outdoor and indoor receiver locations, we compare path loss, delay spreads and angular spreads obtained for two different types of buildings

    Insights and approaches for low-complexity 5G small-cell base-station design for indoor dense networks

    Get PDF
    This paper investigates low-complexity approaches to small-cell base-station (SBS) design, suitable for future 5G millimeter-wave (mmWave) indoor deployments. Using large-scale antenna systems and high-bandwidth spectrum, such SBS can theoretically achieve the anticipated future data bandwidth demand of 10000 fold in the next 20 years. We look to exploit small cell distances to simplify SBS design, particularly considering dense indoor installations. We compare theoretical results, based on a link budget analysis, with the system simulation of a densely deployed indoor network using appropriate mmWave channel propagation conditions. The frequency diverse bands of 28 and 72 GHz of the mmWave spectrum are assumed in the analysis. We investigate the performance of low-complexity approaches using a minimal number of antennas at the base station and the user equipment. Using the appropriate power consumption models and the state-of-the-art sub-component power usage, we determine the total power consumption and the energy efficiency of such systems. With mmWave being typified nonline-of-sight communication, we further investigate and propose the use of direct sequence spread spectrum as a means to overcome this, and discuss the use of multipath detection and combining as a suitable mechanism to maximize link reliability

    Temporal and spatial combining for 5G mmWave small cells

    Get PDF
    This chapter proposes the combination of temporal processing through Rake combining based on direct sequence-spread spectrum (DS-SS), and multiple antenna beamforming or antenna spatial diversity as a possible physical layer access technique for fifth generation (5G) small cell base stations (SBS) operating in the millimetre wave (mmWave) frequencies. Unlike earlier works in the literature aimed at previous generation wireless, the use of the beamforming is presented as operating in the radio frequency (RF) domain, rather than the baseband domain, to minimise power expenditure as a more suitable method for 5G small cells. Some potential limitations associated with massive multiple input-multiple output (MIMO) for small cells are discussed relating to the likely limitation on available antennas and resultant beamwidth. Rather than relying, solely, on expensive and potentially power hungry massive MIMO (which in the case of a SBS for indoor use will be limited by a physically small form factor) the use of a limited number of antennas, complimented with Rake combining, or antenna diversity is given consideration for short distance indoor communications for both the SBS) and user equipment (UE). The proposal’s aim is twofold: to solve eroded path loss due to the effective antenna aperture reduction and to satisfy sensitivity to blockages and multipath dispersion in indoor, small coverage area base stations. Two candidate architectures are proposed. With higher data rates, more rigorous analysis of circuit power and its effect on energy efficiency (EE) is provided. A detailed investigation is provided into the likely design and signal processing requirements. Finally, the proposed architectures are compared to current fourth generation long term evolution (LTE) MIMO technologies for their anticipated power consumption and EE

    Millimeter Wave Systems for Airports and Short-Range Aviation Communications: A Survey of the Current Channel Models at mmWave Frequencies

    Get PDF
    Millimeter-wave (mmWave) communications will play a key role in enhancing the throughput, reliability, and security of next generation wireless networks. These advancements are achieved through the large bandwidth available in this band and through the use of highly directional links that will be used to overcome the large pathloss at these frequencies. Although the terrestrial application of mmWave systems is advancing at a rapid pace, the use of mmWave communication systems in aviation systems or airports is still in its infancy. This can be attributed to the challenges related to radio technology and lack of development, and characterization of mmWave wireless channels for the aviation field and the airport environment. Consequently, one of our goals is to develop methodologies that support mmWave air to ground links, and various links at airports, by applying new localization schemes that allow for application of highly directional links that can be deployed over longer distances despite the high path loss at mmWave frequencies. However, a very thorough understanding of the mmWave channel models are needed to enable such new applications. To this end, in this paper, we present a survey of the current channel models in the mmWave band. The 3-dimensional statistical channel model is also reviewed and its parameters and typical characteristics for this model are identified and computed through simulation for the Boise metropolitan area
    corecore