9 research outputs found

    Directed Graph Representation of Half-Rate Additive Codes over GF(4)

    Get PDF
    We show that (n,2^n) additive codes over GF(4) can be represented as directed graphs. This generalizes earlier results on self-dual additive codes over GF(4), which correspond to undirected graphs. Graph representation reduces the complexity of code classification, and enables us to classify additive (n,2^n) codes over GF(4) of length up to 7. From this we also derive classifications of isodual and formally self-dual codes. We introduce new constructions of circulant and bordered circulant directed graph codes, and show that these codes will always be isodual. A computer search of all such codes of length up to 26 reveals that these constructions produce many codes of high minimum distance. In particular, we find new near-extremal formally self-dual codes of length 11 and 13, and isodual codes of length 24, 25, and 26 with better minimum distance than the best known self-dual codes.Comment: Presented at International Workshop on Coding and Cryptography (WCC 2009), 10-15 May 2009, Ullensvang, Norway. (14 pages, 2 figures

    Classification of real Bott manifolds and acyclic digraphs

    Full text link
    We completely characterize real Bott manifolds up to affine diffeomorphism in terms of three simple matrix operations on square binary matrices obtained from strictly upper triangular matrices by permuting rows and columns simultaneously. We also prove that any graded ring isomorphism between the cohomology rings of real Bott manifolds with Z/2\mathbb Z/2 coefficients is induced by an affine diffeomorphism between the real Bott manifolds. Our characterization can also be described in terms of graph operations on directed acyclic graphs. Using this combinatorial interpretation, we prove that the decomposition of a real Bott manifold into a product of indecomposable real Bott manifolds is unique up to permutations of the indecomposable factors. Finally, we produce some numerical invariants of real Bott manifolds from the viewpoint of graph theory and discuss their topological meaning. As a by-product, we prove that the toral rank conjecture holds for real Bott manifolds.Comment: 27 pages, 5 figures. It is a combination of arXiv:0809.2178 and arXiv:1002.4704, including some new result
    corecore