349 research outputs found

    3D Visual Perception for Self-Driving Cars using a Multi-Camera System: Calibration, Mapping, Localization, and Obstacle Detection

    Full text link
    Cameras are a crucial exteroceptive sensor for self-driving cars as they are low-cost and small, provide appearance information about the environment, and work in various weather conditions. They can be used for multiple purposes such as visual navigation and obstacle detection. We can use a surround multi-camera system to cover the full 360-degree field-of-view around the car. In this way, we avoid blind spots which can otherwise lead to accidents. To minimize the number of cameras needed for surround perception, we utilize fisheye cameras. Consequently, standard vision pipelines for 3D mapping, visual localization, obstacle detection, etc. need to be adapted to take full advantage of the availability of multiple cameras rather than treat each camera individually. In addition, processing of fisheye images has to be supported. In this paper, we describe the camera calibration and subsequent processing pipeline for multi-fisheye-camera systems developed as part of the V-Charge project. This project seeks to enable automated valet parking for self-driving cars. Our pipeline is able to precisely calibrate multi-camera systems, build sparse 3D maps for visual navigation, visually localize the car with respect to these maps, generate accurate dense maps, as well as detect obstacles based on real-time depth map extraction

    OpenVSLAM: A Versatile Visual SLAM Framework

    Full text link
    In this paper, we introduce OpenVSLAM, a visual SLAM framework with high usability and extensibility. Visual SLAM systems are essential for AR devices, autonomous control of robots and drones, etc. However, conventional open-source visual SLAM frameworks are not appropriately designed as libraries called from third-party programs. To overcome this situation, we have developed a novel visual SLAM framework. This software is designed to be easily used and extended. It incorporates several useful features and functions for research and development. OpenVSLAM is released at https://github.com/xdspacelab/openvslam under the 2-clause BSD license.Comment: Accepted to ACM Multimedia 2019 Open Source Software Competition. Video: https://www.youtube.com/watch?v=Ro_s3Lbx5m

    Omnidirectional DSO: Direct Sparse Odometry with Fisheye Cameras

    Full text link
    We propose a novel real-time direct monocular visual odometry for omnidirectional cameras. Our method extends direct sparse odometry (DSO) by using the unified omnidirectional model as a projection function, which can be applied to fisheye cameras with a field-of-view (FoV) well above 180 degrees. This formulation allows for using the full area of the input image even with strong distortion, while most existing visual odometry methods can only use a rectified and cropped part of it. Model parameters within an active keyframe window are jointly optimized, including the intrinsic/extrinsic camera parameters, 3D position of points, and affine brightness parameters. Thanks to the wide FoV, image overlap between frames becomes bigger and points are more spatially distributed. Our results demonstrate that our method provides increased accuracy and robustness over state-of-the-art visual odometry algorithms.Comment: Accepted by IEEE Robotics and Automation Letters (RA-L), 2018 and IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 201

    Odometria visual monocular em robĂ´s para a agricultura com camara(s) com lentes "olho de peixe"

    Get PDF
    One of the main challenges in robotics is to develop accurate localization methods that achieve acceptable runtime performances.One of the most common approaches is to use Global Navigation Satellite System such as GPS to localize robots.However, satellite signals are not full-time available in some kind of environments.The purpose of this dissertation is to develop a localization system for a ground robot.This robot is inserted in a project called RoMoVi and is intended to perform tasks like crop monitoring and harvesting in steep slope vineyards.This vineyards are localized in the Douro region which are characterized by the presence of high hills.Thus, the context of RoMoVi is not prosperous for the use of GPS-based localization systems.Therefore, the main goal of this work is to create a reliable localization system based on vision techniques and low cost sensors.To do so, a Visual Odometry system will be used.The concept of Visual Odometry is equivalent to wheel odometry but it has the advantage of not suffering from wheel slip which is present in these kind of environments due to the harsh terrain conditions.Here, motion is tracked computing the homogeneous transformation between camera frames, incrementally.However, this approach also presents some open issues.Most of the state of art methods, specially those who present a monocular camera system, don't perform good motion estimations in pure rotations.In some of them, motion even degenerates in these situations.Also, computing the motion scale is a difficult task that is widely investigated in this field.This work is intended to solve these issues.To do so, fisheye lens cameras will be used in order to achieve wide vision field of views

    Visual Odometry and Sparse Scene Reconstruction for UAVs with a Multi-Fisheye Camera System

    Get PDF
    Autonomously operating UAVs demand a fast localization for navigation, to actively explore unknown areas and to create maps. For pose estimation, many UAV systems make use of a combination of GPS receivers and inertial sensor units (IMU). However, GPS signal coverage may go down occasionally, especially in the close vicinity of objects, and precise IMUs are too heavy to be carried by lightweight UAVs. This and the high cost of high quality IMU motivate the use of inexpensive vision based sensors for localization using visual odometry or visual SLAM (simultaneous localization and mapping) techniques. The first contribution of this thesis is a more general approach to bundle adjustment with an extended version of the projective coplanarity equation which enables us to make use of omnidirectional multi-camera systems which may consist of fisheye cameras that can capture a large field of view with one shot. We use ray directions as observations instead of image points which is why our approach does not rely on a specific projection model assuming a central projection. In addition, our approach allows the integration and estimation of points at infinity, which classical bundle adjustments are not capable of. We show that the integration of far or infinitely far points stabilizes the estimation of the rotation angles of the camera poses. In its second contribution, we employ this approach to bundle adjustment in a highly integrated system for incremental pose estimation and mapping on light-weight UAVs. Based on the image sequences of a multi-camera system our system makes use of tracked feature points to incrementally build a sparse map and incrementally refines this map using the iSAM2 algorithm. Our system is able to optionally integrate GPS information on the level of carrier phase observations even in underconstrained situations, e.g. if only two satellites are visible, for georeferenced pose estimation. This way, we are able to use all available information in underconstrained GPS situations to keep the mapped 3D model accurate and georeferenced. In its third contribution, we present an approach for re-using existing methods for dense stereo matching with fisheye cameras, which has the advantage that highly optimized existing methods can be applied as a black-box without modifications even with cameras that have field of view of more than 180 deg. We provide a detailed accuracy analysis of the obtained dense stereo results. The accuracy analysis shows the growing uncertainty of observed image points of fisheye cameras due to increasing blur towards the image border. Core of the contribution is a rigorous variance component estimation which allows to estimate the variance of the observed disparities at an image point as a function of the distance of that point to the principal point. We show that this improved stochastic model provides a more realistic prediction of the uncertainty of the triangulated 3D points.Autonom operierende UAVs benötigen eine schnelle Lokalisierung zur Navigation, zur Exploration unbekannter Umgebungen und zur Kartierung. Zur Posenbestimmung verwenden viele UAV-Systeme eine Kombination aus GPS-Empfängern und Inertial-Messeinheiten (IMU). Die Verfügbarkeit von GPS-Signalen ist jedoch nicht überall gewährleistet, insbesondere in der Nähe abschattender Objekte, und präzise IMUs sind für leichtgewichtige UAVs zu schwer. Auch die hohen Kosten qualitativ hochwertiger IMUs motivieren den Einsatz von kostengünstigen bildgebenden Sensoren zur Lokalisierung mittels visueller Odometrie oder SLAM-Techniken zur simultanen Lokalisierung und Kartierung. Im ersten wissenschaftlichen Beitrag dieser Arbeit entwickeln wir einen allgemeineren Ansatz für die Bündelausgleichung mit einem erweiterten Modell für die projektive Kollinearitätsgleichung, sodass auch omnidirektionale Multikamerasysteme verwendet werden können, welche beispielsweise bestehend aus Fisheyekameras mit einer Aufnahme einen großen Sichtbereich abdecken. Durch die Integration von Strahlrichtungen als Beobachtungen ist unser Ansatz nicht von einem kameraspezifischen Abbildungsmodell abhängig solange dieses der Zentralprojektion folgt. Zudem erlaubt unser Ansatz die Integration und Schätzung von unendlich fernen Punkten, was bei klassischen Bündelausgleichungen nicht möglich ist. Wir zeigen, dass durch die Integration weit entfernter und unendlich ferner Punkte die Schätzung der Rotationswinkel der Kameraposen stabilisiert werden kann. Im zweiten Beitrag verwenden wir diesen entwickelten Ansatz zur Bündelausgleichung für ein System zur inkrementellen Posenschätzung und dünnbesetzten Kartierung auf einem leichtgewichtigen UAV. Basierend auf den Bildsequenzen eines Mulitkamerasystems baut unser System mittels verfolgter markanter Bildpunkte inkrementell eine dünnbesetzte Karte auf und verfeinert diese inkrementell mittels des iSAM2-Algorithmus. Unser System ist in der Lage optional auch GPS Informationen auf dem Level von GPS-Trägerphasen zu integrieren, wodurch sogar in unterbestimmten Situation - beispielsweise bei nur zwei verfügbaren Satelliten - diese Informationen zur georeferenzierten Posenschätzung verwendet werden können. Im dritten Beitrag stellen wir einen Ansatz zur Verwendung existierender Methoden für dichtes Stereomatching mit Fisheyekameras vor, sodass hoch optimierte existierende Methoden als Black Box ohne Modifzierungen sogar mit Kameras mit einem Gesichtsfeld von mehr als 180 Grad verwendet werden können. Wir stellen eine detaillierte Genauigkeitsanalyse basierend auf dem Ergebnis des dichten Stereomatchings dar. Die Genauigkeitsanalyse zeigt, wie stark die Genauigkeit beobachteter Bildpunkte bei Fisheyekameras zum Bildrand aufgrund von zunehmender Unschärfe abnimmt. Das Kernstück dieses Beitrags ist eine Varianzkomponentenschätzung, welche die Schätzung der Varianz der beobachteten Disparitäten an einem Bildpunkt als Funktion von der Distanz dieses Punktes zum Hauptpunkt des Bildes ermöglicht. Wir zeigen, dass dieses verbesserte stochastische Modell eine realistischere Prädiktion der Genauigkeiten der 3D Punkte ermöglicht
    • …
    corecore