62 research outputs found

    A new approach for solving optimal nonlinear control problems using decriminalization and rationalized Haar functions

    Get PDF
    Abstract. This paper presents a numerical method based on quasilinearization and rationalized Haar functions for solving nonlinear optimal control problems including terminal state constraints, state and control inequality constraints. The optimal control problem is converted into a sequence of quadratic programming problems. The rationalized Haar functions with unknown coefficients are used to approximate the control variables and the derivative of the state variables. By adding artificial controls, the number of state and control variables is equal. Then the quasilinearization method is used to change the nonlinear optimal control problems with a sequence of constrained linear-quadratic optimal control problems. To show the effectiveness of the proposed method, the simulation results of two constrained nonlinear optimal control problems are presented

    A new approach for solving optimal nonlinear control problems using decriminalization and rationalized Haar functions

    Get PDF
    Abstract. This paper presents a numerical method based on quasilinearization and rationalized Haar functions for solving nonlinear optimal control problems including terminal state constraints, state and control inequality constraints. The optimal control problem is converted into a sequence of quadratic programming problems. The rationalized Haar functions with unknown coefficients are used to approximate the control variables and the derivative of the state variables. By adding artificial controls, the number of state and control variables is equal. Then the quasilinearization method is used to change the nonlinear optimal control problems with a sequence of constrained linear-quadratic optimal control problems. To show the effectiveness of the proposed method, the simulation results of two constrained nonlinear optimal control problems are presented

    On paired decoupled quasi-linearization methods for solving nonlinear systems of differential equations that model boundary layer fluid flow problems.

    Get PDF
    Doctoral Degree. University of KwaZulu-Natal, Pietermaritzburg.Two numerical methods, namely the spectral quasilinearization method (SQLM) and the spectral local linearization method (SLLM), have been found to be highly efficient methods for solving boundary layer flow problems that are modeled using systems of differential equations. Conclusions have been drawn that the SLLM gives highly accurate results but requires more iterations than the SQLM to converge to a consistent solution. This leads to the problem of figuring out how to improve on the rate of convergence of the SLLM while maintaining its high accuracy. The objective of this thesis is to introduce a method that makes use of quasilinearization in pairs of equations to decouple large systems of differential equations. This numerical method, hereinafter called the paired quasilinearization method (PQLM) seeks to break down a large coupled nonlinear system of differential equations into smaller linearized pairs of equations. We describe the numerical algorithm for general systems of both ordinary and partial differential equations. We also describe the implementation of spectral methods to our respective numerical algorithms. We use MATHEMATICA to carry out the numerical analysis of the PQLM throughout the thesis and MATLAB for investigating the influence of various parameters on the flow profiles in Chapters 4, 5 and 6. We begin the thesis by defining the various terminologies, processes and methods that are applied throughout the course of the study. We apply the proposed paired methods to systems of ordinary and partial differential equations that model boundary layer flow problems. A comparative study is carried out on the different possible combinations made for each example in order to determine the most suitable pairing needed to generate the most accurate solutions. We test convergence speed using the infinity norm of solution error. We also test their accuracies by using the infinity norm of the residual errors. We also compare our method to the SLLM to investigate if we have successfully improved the convergence of the SLLM while maintaining its accuracy level. Influence of various parameters on fluid flow is also investigated and the results obtained show that the paired quasilinearization method (PQLM) is an efficient and accurate method for solving boundary layer flow problems. It is also observed that a small number of grid-points are needed to produce convergent numerical solutions using the PQLM when compared to methods like the finite difference method, finite element method and finite volume method, among others. The key finding is that the PQLM improves on the rate of convergence of the SLLM in general. It is also discovered that the pairings with the most nonlinearities give the best rate of convergence and accuracy

    A Numerical Approach for Solving Optimal Control Problems Using the Boubaker Polynomials Expansion Scheme

    Get PDF
    In this paper, we present a computational method for solving optimal control problems and the controlled Duffing oscillator. This method is based on state parametrization. In fact, the state variable is approximated by Boubaker polynomials with unknown coefficients. The equation of motion, performance index and boundary conditions are converted into some algebraic equations. Thus, an optimal control problem converts to a optimization problem, which can then be solved easily. By this method, the numerical value of the performance index is obtained. Also, the control and state variables can be approximated as functions of time. Convergence of the algorithms is proved. Numerical results are given for several test examples to demonstrate the applicability and efficiency of the method

    Solving Quadratic Optimal Control Problems Using Legendre Scaling Function and Iterative Technique

    Get PDF
    During the last three decades several approximation techniques based on the property of functions orthogonality were proposed to solve different classes of optimal control problems (OCPS). The methods used to solve OCPS are classified into two types: the direct methods are discretization and parameterization while indirect methods are Caley-Hamilton and Euler-Lagrange. The direct parameterization methods are classified into three ways control parameterization, state parameterization, and state-control parameterization. The proposed method in this thesis uses state-control parameterization via Legendre scaling function in which OCPS is converted into quadratic programming. In addition, when OCP in quadratic form, it is easy to solve it by using any software package like MATLAB, Mathmatica, or Maple. The optimal control problems investigated in this thesis deals with linear time invariant (LTI) systems, linear time varying (LTV) systems, and nonlinear systems. The LTI and LTV problems were parameterized based on the Legendre scaling function such that the cost function and the constraints are casted in terms of state and control parameters while, complex nonlinear OCPS can be solved by proposed method after converted to a sequence of time varying problem using iterative technique. To demonstrate applicability and effectiveness of the proposed technique various numerical examples are solved and the results are better when compared with other methods

    Novel Numerical Approaches for the Resolution of Direct and Inverse Heat Transfer Problems

    Get PDF
    This dissertation describes an innovative and robust global time approach which has been developed for the resolution of direct and inverse problems, specifically in the disciplines of radiation and conduction heat transfer. Direct problems are generally well-posed and readily lend themselves to standard and well-defined mathematical solution techniques. Inverse problems differ in the fact that they tend to be ill-posed in the sense of Hadamard, i.e., small perturbations in the input data can produce large variations and instabilities in the output. The stability problem is exacerbated by the use of discrete experimental data which may be subject to substantial measurement error. This tendency towards ill-posedness is the main difficulty in developing a suitable prediction algorithm for most inverse problems. Previous attempts to overcome the inherent instability have involved the utilization of smoothing techniques such as Tikhonov regularization and sequential function estimation (Beck’s future information method). As alternatives to the existing methodologies, two novel mathematical schemes are proposed. They are the Global Time Method (GTM) and the Function Decomposition Method (FDM). Both schemes are capable of rendering time and space in a global fashion thus resolving the temporal and spatial domains simultaneously. This process effectively treats time elliptically or as a fourth spatial dimension. AWeighted Residuals Method (WRM) is utilized in the mathematical formulation wherein the unknown function is approximated in terms of a finite series expansion. Regularization of the solution is achieved by retention of expansion terms as opposed to smoothing in the classical Tikhonov sense. In order to demonstrate the merit and flexibility of these approaches, the GTM and FDM have been applied to representative problems of direct and inverse heat transfer. Those chosen are a direct problem of radiative transport, a parameter estimation problem found in Differential Scanning Calorimetry (DSC) and an inverse heat conduction problem (IHCP). The IHCP is resolved for the cases of diagnostic deduction (discrete temperature data at the boundary) and thermal design (prescribed functional data at the boundary). Both methods are shown to provide excellent results for the conditions under which they were tested. Finally, a number of suggestions for future work are offered

    Solving Optimal Control Problem Via Chebyshev Wavelet

    Get PDF
    Over the last four decades, optimal control problem are solved using direct and indirect methods. Direct methods are based on using polynomials to represent the optimal problem. Direct methods can be implemented using either discretization or parameterization. The proposed method in my thesis is considered as a direct method in which the optimal control problem is directly converted into a mathematical programming problem. A wavelet-based method is presented to solve the non-linear quadratic optimal control problem. The Chebyshev wavelets functions are used as the basis functions. The proposed method is also based on the iteration technique which replaces the nonlinear state equations by an equivalent sequence of linear time-varying state equations which is much easier to solve. Numerical examples are presented to show the effectiveness of the method, several optimal control problems were solved, and the simulation results show that the proposed method gives good and comparable results with some other methods
    corecore