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Abstract 
 

 
Over the recent years, many techniques and methods have been proposed to solve the 

difficult nonlinear optimal control problem. These methods can be classified as: direct and 

indirect methods. The proposed method in this work is classified as a direct method in 

which the optimal control problem is directly converted into a mathematical programming 

problem. As its name implies, direct methods are employed by directly substituting the 

control and state variables into the performance index.  

 

Direct methods can be implemented using either discretization or parameterization. 

Parameterization can be implemented using one of three ways: (1) Control 

parameterization, (2) Control-state parameterization and (3) State parameterization. The 

proposed method in this work is based on state parameterization which is employed by 

parameterizing the system state variables by a finite length series Chebyshev or Legendre 

polynomials with unknown parameters. 

 

The proposed method in this work is also based on the iteration technique which replaces 

the nonlinear state equations by an equivalent sequence of linear time-varying state 

equations. Then, state parameterization is applied on this sequence. By this, the original 

nonlinear quadratic optimal control problem is directly converted into quadratic linear 

programming problems, which are easier to solve. 

 

To show the effectiveness of the proposed method, several optimal control problems free 

and subject to different types of constraints were solved, and the simulation results show 

that the proposed method gives good and comparable results with some other methods. 

Among the optimal control problems which were solved is the complex containers crane 

problem. 
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Chapter One 
 

 

 

Introduction 

 
1.1 Motivations 

 

Optimal control problem is to find an optimal controller �∗ that minimizes a certain cost 

function (specification) keeping at the same time the system state equations, initial 

condition, and any other constraints of the system satisfied. Examples of optimal control 

applications include environment, engineering, economics etc. 

 

Unlike linear optimal control problem which has an analytical solution that is given as a 

closed loop feedback control law, nonlinear optimal control problem does not. This 

motivates many researchers to try to find a solution to this problem. In most cases, if not 

all, these solutions are numerical i.e. approximate or suboptimal solutions.   

 

Generally, solution methods to optimal control problem are classified as direct and indirect 

methods. Indirect methods are usually employed by converting the optimal control 

problem into a two-point boundary value problem TPBVP and solving this new problem 

which is easier than the original problem or finding a solution that satisfies the Hamilton-

Jacobi-Bellman equation. The main advantage of indirect methods is that the resulted 

solutions produce a closed loop or feedback control law. However, indirect methods suffer 

some drawbacks which are [8]: (1) There is no solution to the Hamilton-Jacobi-Bellman 

equation of general nonlinear optimal control problem. (2) The introduction of artificial 

costates. (3) The lack of robustness. (4) A deep knowledge of the system model 

(mathematical and physical) is required. 

 

For those reasons and others direct methods were proposed to solve optimal control 

problems. Direct methods are employed by either discretization or parameterization of the 

state and/or the control variables. In discretization, many discrete points (samples) of the 

state and/or control variable are required in order to produce accurate results. This would 

ends up with a system of large dimension (curse of dimensionality). On the other hand, 

parameterization can be implemented by one of the three ways: (1) Control 

parameterization is employed by approximating the control variables by a finite series of 

known functions with unknown parameters, then the state variables are obtained as a 

function of the unknown parameters by integrating the system state equation. This process 

is computationally expensive [15]. (2) Control-state parameterization is employed by 

approximating both state and control variables by a finite series of known functions with 

unknown parameters. The resulted system would ends up with large unknown parameters. 

(3) State parameterization is the least used method compared with control 

parameterization and control-state parameterization. In state parameterization, only some 
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state variables are directly approximated by a finite series of known functions with 

unknown parameters. The remaining state and control variables are obtained as a function 

of the unknown parameters directly from the state equation(s). 

 

Though, state parameterization is not used extensively in optimal control. Our choice in 

this work is to use state parameterization because it has some advantages over both control 

parameterization and control-state parameterization. These advantages are: (1) There is no 

need as in control parameterization to integrate the system state equations. (2) The number 

of unknown parameters is smaller compared with control-state parameterization. (3) The 

state constraints can be handled directly. 

 

State parameterization requires known functions for the approximation of the state 

variables. To simplify computation of the optimal control problem, the known functions 

are usually chosen to be orthogonal. In this work, we choose two orthogonal functions; 

Chebyshev and Legendre polynomials. These polynomials offer some advantages over 

other orthogonal functions. Fast convergence and good min-max properties [17] are only 

few advantages that both functions offer. 
 

1.2 Thesis Goals 

 

The main goal of this work is to apply the iteration technique developed by Banks [3-7] on 

the optimal control problem under consideration to directly obtain a numerical solution to 

this problem. As a result, state parameterization via Legendre or Chebyshev polynomials 

will be applied on the resulted optimal control problems of the iteration technique. In the 

application of state parameterization, we will follow Jaddu method [8].  

 

 

1.3 Thesis Contribution 
 

The main contribution of this work is the introduction of a new technique for solving the 

nonlinear quadratic optimal control problem, both free and subject to different types of 

constrains. As a result, other contribution can be stated as follows: 

 

• Introducing a new Legendre polynomial property called the differentiation 

operational matrix. This matrix is used to approximate the derivatives of the state 

polynomials using Legendre polynomials. 

 

• Introducing a new formula for the approximated performance index using 

Legendre polynomials. 

 

• Introducing a new method for solving the linear quadratic optimal control problem 

using state parameterization via Legendre polynomials. 
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1.4 Thesis Organization 

 
The remaining chapters of this thesis are organized as follows: 

 

Chapter two reviews the optimal control problem in general and discusses some of the 

important previous works that are proposed to handle the optimal control problem. In this 

chapter, the computational techniques and methods used to handle optimal control 

problems are classified into direct and indirect methods.  

 

Chapter three describes a method for solving the linear quadratic optimal control 

problems. In spite of the fact that this work is intended for nonlinear optimal control 

problems, it is necessary to solve linear optimal control problems, because as will be 

demonstrated in chapters four and five, the solution method for nonlinear optimal control 

problems is based on converting the nonlinear optimal control problem into a sequence of 

linear time-varying optimal control problems. All aspects of state parameterization via 

Legendre polynomials are discussed in this chapter. In addition, some of the important 

properties of Legendre polynomials are reviewed. One of them is a newly introduced 

property for the Legendre polynomials called the differentiation operational matrix. This 

property is used to approximate the derivative of the state variables. An explicit formula to 

approximate the quadratic performance index using Legendre polynomials is introduced. 

Finally, computational results of a standard example are introduced and the results are 

compared with some other methods.    

 

Chapter four presents the main idea of this work, where a computational method for 

solving the nonlinear quadratic optimal control problem is introduced. In this chapter, the 

concept of the iteration technique is presented. Also introduced in this chapter is state 

parameterization via Chebyshev polynomials developed by Jaddu [8]. In this chapter, the 

steps of converting the nonlinear quadratic optimal control problem into a sequence of 

quadratic programming problems are introduced. To verify the proposed method, a 

standard example is solved for the purpose of comparison with other methods. 

 

Chapter five is an extension of chapter four, where the optimal control problem under 

consideration is subject to different types of constraints. These constraints include: 

Terminal state constraints, State saturation constraints and Control saturation constraints. 

In this chapter, the constrained nonlinear quadratic optimal control problem is converted 

into a constrained sequence of standard quadratic programming problems solved using the 

active set method. To show the effectiveness of the proposed method, a typical Van der 

Pol problem subject to different types of constrained is solved and the results are 

compared with the results of other methods. Also introduced in this chapter is the complex 

problem of transferring containers from ships to trucks at the port of Kobe. 

 

Finally, Chapter six presents some of the important conclusions of this work and a 

suggestion of the future work that can be built over this thesis. 
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Chapter two 

 

 

 

Optimal Control Problem: Literature Review      
      

2.1 Introduction 
 

In this chapter, we present a review of the optimal control problem in general. We discuss 

some of the important previous works presented to handle the optimal control problem. 

Many textbooks [1-2] and survey papers [31-32] that handled optimal control problem 

were published.  

 

Basically, the main objective of optimal control is to find a controller that can be an open 

loop (off- line) controller denoted as �∗(�) or a closed loop (on-line) controller denoted as �∗(�(�), �). This controller is optimal because when applied to the dynamic system, it 

minimizes (maximizes) a certain function called the cost function or performance index 

keeping at the same time the system physical constraints unviolated. The performance 

index or cost function can be considered as the desired specifications of the system.   

 

The basic optimal control problem consists of three elements: 

 

1. Plant model: This is the system to be controlled. Mathematically, it is represented 

as a set of state equations which are a set of first order differential equations 

 �� = 
(�(�), �(�), �) , � ∈ [�
, ��]    (2.1) 

 

where � ∈ ��  is the state vector, � ∈ ��  is the control vector. 
  is assumed 

continuous differentiable function with respect to all its arguments. 

 

2. Initial plant state: A set of initial conditions which indicate the system state values 

at initial time 

 �(�
) = �
     (2.2) 

 

where �
 ∈ �� represents a known initial condition vector. 

 

3. Plant performance index (specifications): The desired specifications of the system 

that needs to be minimized (or maximized). Mathematically, the performance 

index is represented by a scalar function given by  
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� = ℎ������, ��� + � �(�(�), �(�), �)������    (2.3) 

 

where �
 and �� are the initial and final time; ℎ and � are scalar functions. �� may 

be specified or “free”, depending on the problem statement. Figure (2.1) shows the 

elements of a basic optimal control problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure (2.1) Elements of an optimal control problem 

 

 

2.2 Problem Statement 

 

The general unconstrained optimal control problem can be stated as follows: 

Find an optimal controller, feedback �(�(�), �) if possible, or if not an open loop �(�) that 

minimizes the following performance index 

 � = ℎ������, ��� + � �(�(�), �(�), �)������    (2.4) 

 

subject to 

 �� = 
(�(�), �(�), �)          �(�
) = �
    (2.5) 

 

Many methods have been proposed to solve the problem (2.4)-(2.5). More or less, these 

methods can be categorized into one of the following tracks: 

 

• Dynamic programming (Hamilton-Jacobi-Bellman HJB Equation). 

• Calculus of Variation (Euler-Lagrange Equations). 

• Parameterization or discretization (nonlinear mathematical programming).  

  

� = ℎ������, ��� + � �(�(�), �(�), �)����

��
 

Performance Index 

“Desired System Specifications” 

Controller �� = 
(�(�), �(�), �) �(�
) = �
 

Plant “Process” 

“System to be controlled” �(�) 
�(�) 

�(�(�)) 
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Dynamic programming is based on methods that satisfy HJB equation. The optimal 

controller resulted from these methods is a closed loop or feedback controller �(�(�)).  

Methods that are based on the calculus of variation (Euler-Lagrange equations) convert the 

optimal control problem into a Two-Point Bounded Value Problem (TPBVP). The optimal 

controller resulted from using these methods would also produce a feedback or closed loop 

controller �(�(�)). Methods that are based on HJB equation or Euler-Lagrange equations 

are usually classified as indirect methods. 

 

Methods that are based on parameterization or discretization are classified as direct 

methods. Direct methods usually produce an open loop optimal controller �(�). Direct 

methods are based on solving the optimal control problem by converting it into a nonlinear 

programming problem. The proposed method in this work is classified as a direct method.  

 

In the following sections, we discuss these methods and review some of the important 

papers that were published. Figure (2.2) shows a block diagram that illustrates the 

computational methods of optimal control problem. 

 

 

 

 

 

 

 

 

 

 

 

  

 

Figure (2.2) Computation methods of optimal control problem 

 

2.3 Indirect Methods 

 

In this section, we review some of the important methods that are classified as indirect 

method. As indicated earlier, these methods are based on solutions that satisfy the HJB 

equation or on solutions that convert the optimal control problem into a TPBVP. In what 

follows is a review of these methods: 

 

1. Power series approach: This approach is based on finding an approximate solution to 

the Hamilton-Jacobi-Bellman equation or the nonlinear two-point boundary value 

Optimal Control Problem 

Direct Methods Indirect Methods 

Parameterization Discretization HJB TPBVP 

Control 

Parameterization 

Control-State 

Parameterization 

State 

Parameterization 

Control-State 

Discretization 

Control 

Discretization 
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problem by using power series expansion. The approximated feedback control law 

obtained by this technique is solved successively. The pioneers of this method are: 

 

• Lukes [33]: Applied this method to obtain an approximated feedback control law 

of the HJB equation. Lukes assumed a general nonlinear infinite horizon 

(regulator) optimal control problem. The problem treated by Lukes can be stated as 

 

Find a feedback controller �(�) that minimizes the following performance index 

 � = � (� !� + 2� #� + � �� + �(�, �))��$
    (2.8) 

 

subject to 

 �� = %�(�) + &�(�) + 
(�(�), �(�))   (2.9) 

 

where !, �  are real symmetric positive definite matrices and %, &, #  are real 

matrices. 
(�, �)  is a higher order term in (�, �)  of order two and above and �(�, �)  is also a higher order term in (�, �)  of order three and above. Lukes 

assumed that the expected feedback control law will be of the form 

 �(�) = '� + ℎ(�)    (2.10) 

 

where ℎ(�)  is a higher order term in �  of order two and above. The optimal 

controller �∗(�)  and the optimal performance index �∗(�)  can be found 

successively as 

 �∗(�) = �∗[(](�) + �∗[)](�) + ⋯ + �∗[�](�)   (2.11) 

 �∗(�) = �∗[)](�) + �∗[+](�) + ⋯ + �∗[,](�)   (2.12) 

 

By this, the original difficult optimal control problem reduced to solving 

successively systems of linear algebraic equations.  

 

• Willemstein [34]: Extended the work of Lukes to handle finite time optimal control 

problems both fixed end and free end. The optimal control problem reduced to 

solving successively systems of ordinary differential equations. 

• Garrard and Jordan [35]: Applied the work done by Lukes to control a complex 

dynamic system of an F8 fighter jet. 

• Yoshida and Loparo [36]: Apply a similar idea of Lukes to solve a nonlinear 

optimal control problem with quadratic performance index for both finite and 

infinite time problems. The problem treated by Yoshida can be stated as 

 

Find an approximate feedback optimal controller �(�) that minimizes 

 � = � (� !� + � ��)����
     (2.13) 

 

subject to the following dynamic system  
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�� = 
(�) + &�    (2.14) 

 

where 
(�) includes the linear and nonlinear terms of the dynamic system. The 

function 
(�) was expanded by a power series around the origin. Also, the costates 

were expanded by a power series with unknown parameters. By this, the finite time 

optimal control problem was reduced to solving a Riccati equation and a sequence 

of ordinary linear differential equations. Whereas, the solution to the infinite time 

optimal control problem was reduced to solving a sequence of algebraic equations. 

 

2. Extended linearization method [9, 37]: In this method, the nonlinear dynamic system 

expressed as a nonlinear state equations of the form 

 �� = 
(�, �, �)     (2.15)    

 

where 
(�, �, �) is a nonlinear function in � is to be rewritten in a “pseudo” linear form 

 �� = %(�)� + &(�)�     (2.16) 

 

where the matrices %(�), &(�) are called State Dependant Coefficient (SDC) matrices.  

 

Using this method, the quadratic nonlinear optimal control problem has an 

approximate feedback controller of the form 

 �(�) = −�.(& /(�)�(�)   (2.17) 

 

where /(�) is the solution of the following State Dependant Riccati Equation (SDRE) 

 /� (�) = /(�)%(�) + % (�)/(�) − /(�)&(�)�.((�)& (�)/(�) + !(�)  (2.18)  

 

and for the infinite horizon problem /� (�) = 0 , and (2.18) becomes Algebraic State 

Dependent Riccati Equation (ASDRE) written as 

 /(�)%(�) + % (�)/(�) − /(�)&(�)�.((�)& (�)/(�) + !(�) = 0  (2.19) 

 

3. Inverse optimal control problem: In this method, an optimal feedback control is 

obtained by finding a solution to the inverse optimal control problem. For more details 

of this method, the reader can refer to [38] and the references therein. 

 

2.4 Direct Methods 

 
As their name implies, direct methods are employed by direct substitution of the state and 

control variables into the performance index without constructing the Hamiltonian of the 

system as in indirect methods. This would produce many advantages of direct methods 

over indirect methods. Some of these advantages are: (1) There is no need to find a 

costates variables. (2) Using direct methods, the dynamic optimal control problem is 

converted into a static optimization problem. (3) As a result, many software packages are 

available to solve this static problem. (4) Different constraints can be handled directly. 

Due to these advantages and to the drawbacks of the indirect methods mentioned earlier, 

many techniques and methods were proposed that are based on direct methods.  
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By using direct methods, the difficult nonlinear dynamic optimal control problem is 

converted into a nonlinear mathematical programming problem. Direct methods can be 

implemented by either using discretization or parameterization methods. In this work, we 

will use parameterization technique to convert the difficult nonlinear quadratic optimal 

control problem into linear time-varying quadratic control problems which are much easier 

than the original problem. In the following sections, we will briefly discuss both 

discretization and parameterization technique with some focus on parameterization.   

 

2.4.1 Discretization: 

 

Discretization is a process in which the time interval � ∈ [�
, ��] is to be divided into an 

equal 1 time segments. Mathematically, this can be given as 

 �
 < �( < �) < �+ < ⋯ < �� = ��    (2.20) 

 

As a result, and depending on the discretization technique, the variable(s) is (are) sampled 

at each time point in (2.20). Basically, there are two discretization technique used in 

optimal control problem: Control-state discretization and control discretization. 

 

1. Control-State Discretization: 

 
In this method, both state and control variables are to be discretized. As a result, the 

following vector which contains a sequence of unknown state and control variables will be 

produced 

 3 = (�
, �(, … , ��, �
, �(, … , ��.()    (2.21) 

 

By this, the system state equations are replaced by algebraic equations which are treated as 

equality constraints. This would convert the original optimal control problem into a static 

optimization problem that can be solved using any available software packages like 

MATLAB. Note that in order to have accurate results, large amount of samples should be 

taken, this would result in a system that is highly dimensional. In literature, this is referred 

to as the “curse of dimensionality” [45]. More details about this method can be found in 

[10] 

 

2. Control Discretization: 

 

In this method, only the control variables are to be discretized. As a result, the following 

vector is obtained 

 3 = (�(, �), … , ��.()     (2.22) 

 

In order to get the state variables, it is necessary to integrate the system state equations. 

This would produce state variables that are a function of the control variables. An 

advantage of this method over control-state discretization is that the resulted system is 

lower in dimension. For more details of these techniques and method, the reader can refer 

to [10]. 
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2.4.2 Parameterization: 

 
Parameterization is a process in which a function or a variable is approximated using 

known functions with known or unknown parameters. Parameterization can be employed 

by one of the three forms: Control parameterization, control-state parameterization and 

state parameterization. In this work, we use state parameterization. 

 

1. Control Parameterization: 

 
In this method, only the control variables are approximated by a finite length series of 

known functions with unknown parameters. Mathematically, this can be formulated as 

follows 

 �, = ∑ 67(,)
7879
 (�)            : = 1,2, … , <   (2.23) 

 

where = is the order of approximation, 67′? are the unknown parameters and 
7(�) is a 

suitably selected set of functions forming a basis of the control space. 

 

By integrating the state equation, the state variables can be obtained as a function of the 

unknown parameters of the control variables. Both control and state variables are then 

directly substituted into the performance index. By this, the original difficult optimal 

control problem is converted into a static optimization problem of the unknown 

parameters which can be solved using any available software packages. 

 

This method is the most widely used method compared to the other parameterization 

techniques. But, integration of the state equations to get the state variables is an expensive 

computation process [15]. More details about this method can be found in [12, 18, 23]. 

 

2. Control-State Parameterization: 

 

Using this method, both control and state variables are approximated by a finite length 

series of known functions with unknown parameters of its own. Mathematically, this can 

formulated as follows 

 �, = ∑ @7(,)
7879
 (�)            : = 1,2, … , 1   (2.24) 

 �A = ∑ 67(A)
7879
 (�)            B = 1,2, … , <   (2.25) 

 

where @7’s, 67’s are the unknown parameters, = is the order of approximation and 
7  is a 

suitably selected set of functions forming a basis. By this, the optimal control problem is 

converted into a nonlinear mathematical programming problem. Since both state and 

control variables are parameterized, the resulted system would ends up with a large 

number of unknown parameters. More details about this method can be found in [25, 26]. 

 

3. State Parameterization: 

 

In this method, only the state variables are to be approximated by a finite length series of 

known functions with unknown parameters. Mathematically, this can be formulated as 

follows 
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�, = ∑ @7(,)
7879
 (�)            : = 1,2, … , 1   (2.26) 

 

The control variables can be obtained from the state equations. The work of thesis is based 

on using state parameterization. The idea is to choose a set of state variables that are to be 

approximated directly by a finite length series of known functions with unknown 

parameters. The remaining state and control variables can be obtained as a function of the 

directly approximated state variables parameters from the system state equations. This 

would decrease the resulted system dimension dramatically. If any state equation remains 

unsatisfied, it will be considered as an equality constraint. 

 

By using state parameterization, drawbacks of control parameterization and control-state 

parameterization can be overcome. In state parameterization, there is no need to integrate 

the state equations to get the state variables as in control parameterization. The dimension 

of the resulted system is much smaller compared to control-state parameterization. In 

control-state parameterization, all system state equations will be replaced by equality 

constraints, while in state parameterization only unsatisfied state equation(s) will be 

replaced by equality constraints. It is difficult to handle state constraints in control 

parameterization and control-state parameterization, while in state parameterization all 

state constraints can be treated directly. 

 

All these advantage of state parameterization makes it almost perfect for solving linear 

optimal control problems. However, in nonlinear systems it is difficult to apply state 

parameterization [14]. One of the reasons for this is the difficulty of getting the control 

variables out of the state equations. In this work, we overcome this problem by using the 

iteration technique [3-7] which will replace the original nonlinear state equations by an 

equivalent sequence of linear time-varying state equations.     

 

Application of state parameterization requires basis functions. State parameterization can 

be implemented using different basis function [23]. In this work, we will use Chebyshev 

and Legendre polynomials as the basis functions to parameterize the state variables.  

 

The use of Chebyshev polynomial in optimal control is not new. Many papers have been 

published to handle linear and nonlinear optimal control problems. Examples of papers 

that use Chebyshev polynomials to handle optimal control problems are: Jaddu [8, 16, 24] 

used state parameterization and quasilinearization to solve a general nonlinear optimal 

control problems. Vlassenbroeck and Van Dooren [13] handled the nonlinear optimal 

control problems subject to different type of constraints by parameterizing both state and 

control variables using Chebyshev polynomials.  

 

On the other hand, the use of Legendre polynomials in optimal control problems is rare. 

Up to our knowledge, most of the applications are of other versions of Legendre 

polynomials and in particular shifted Legendre polynomials. Examples can be found in 

[39, 41] and the references therein. 

 

In this thesis, we will propose a method that can handle both linear and nonlinear optimal 

control problems using state parameterizations and Legendre or Chebyshev polynomials. 
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Chapter Three 

 

 

 

Linear Quadratic Optimal Control Problem 

 
3.1 Introduction 

 

In spite of the fact that this work is intended for nonlinear optimal control problems, it is 

necessary to study linear optimal control problems, because as will be seen in the next 

chapter, the main idea proposed in this work to handle nonlinear optimal control problems 

is to replace the original nonlinear state equations by an equivalent sequence of linear 

time-varying state equations [3-7]. 

 

It is well known that the linear optimal control problem is one of the few optimal control 

problems that can be solved analytically. The solution of this problem gives a feedback 

control law. This solution can be found in many text books like [1-2]. However, this 

solution is not that easy. In order to solve this problem, it is necessary to solve either the 

nonlinear matrix Riccati equation or to convert the problem into Two-Point Boundary 

Value Problem (TPBVP).  

 

In order to avoid difficulties associated with solving linear optimal control problems using 

indirect methods, some researchers proposed direct methods by using either discretization 

or parameterization. Razzaghi and Elnagar [41] parameterize the derivative of the state 

variables using shifted Legendre polynomials. Jaddu [8, 40] proposed a method that is 

based on state parameterization using Chebyshev polynomials. Other researchers proposed 

methods that are based on converting the linear two-point boundary value problem into a 

set of linear algebraic equations by parameterizing the state and costate variables [42]. 

 

In this chapter, we will propose a new method for handling linear quadratic optimal 

control problems using state parameterization via Legendre polynomials. This method will 

be used in the next chapter to handle nonlinear optimal control problems.  

 

3.2 Statement of Linear Quadratic Optimal Control Problem 

 

The linear quadratic optimal control problem can be stated as follows: 

Find an optimal controller �∗(�)  that minimizes the following quadratic performance 

index 

 � = � (� !� + � ��)����
     (3.1) 
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subject to the following linear dynamic system and initial conditions 

 �� = %�(�) + &�(�),   �(0) = �
    (3.2) 

 

where � ∈ ��, � ∈ ��, �
 ∈ �� , %, &  are 1 × 1  and 1 × <  real-valued matrices 

respectively. !  is an 1 × 1  positive semidefinite matrix and �  is an < × <  positive 

definite matrix. We will assume that < ≤ 1 and � ∈ [0, ��]. 
 

The method proposed to handle problem (3.1)-(3.2) is based on directly parameterizing the 

state variables by a finite length series of Legendre polynomials with unknown 

parameters.  

 

3.3 State Parameterization via Legendre Polynomials 

 

In this section, we will discuss all aspects of state parameterization using Legendre 

polynomials. Before doing this, it is worth to review some of the important properties of 

Legendre polynomials. 

 

3.3.1 Legendre Polynomials: 

 
Due to many advantages that Legendre polynomials offer in comparison with other 

orthogonal polynomials, we will use them in this work to perform state parameterization. 

Fast convergence and good min-max properties are examples of these advantages [17]. In 

this section, some background review of Legendre polynomials is given to help presenting 

the upcoming materials in the next sections and chapters. 

 

The Legendre polynomials of the first kind are defined on the interval E ∈ [−1,1]. Many 

formulas can be given to generate these polynomials. In this work, we will use the 

Rodrigues formula [19] to generate the Legendre polynomials as follows 

 /�(E) = ()F�! HFHIF (E) − 1)�    (3.3) 

 

From which the first three Legendre polynomials can be given 

    

 /
(E) = 1      
 /((E) = E      (3.4) 

 /)(E) = () (3E) − 1)         

 

The Legendre polynomials are solution to the Legendre differential equation 

 (1 − E)) HKLHIK − 2E HLHI + 1(1 + 1)3 = 0   (3.5) 

 

Two Legendre polynomials /�(E) and /�(E)  are orthogonal on the interval E ∈ [−1,1] 
with respect to a unity weighing function 
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� /�(E)/�(E)(.( = M0           1 ≠ <))�O(     1 = <P    (3.6) 

 

In this work, we will use some of the important properties of Legendre polynomials which 

are  

• Initial and final value 

 /�(1) = 1      (3.7) 

 /�(−1) = (−1)�     (3.8) 

 

• Product relation [20] 

 /�(E)/�(E) = ∑ QRQFSRQTSRQFUTSR )�O)�.VWO()�O)�.)WO(�W9
 /�O�.)W(E)  (3.9) 

 

where 1 ≥ <, %W = YZK[WW! ; where (@)\ = @(@ + 1)(@ + 2) … (@ + \ − 1), and (@)
 = 1. 

A function �(E) can be approximated using Legendre series of length = as follows 

 �(E) = ∑ @7/7(E)879
      (3.10) 

 

where 

 @7 = )7O() � �(E)/7(E)�E(.(     ] = 0,1, … , =   (3.11) 

 

In state parameterization, it is necessary to approximate the derivative of the state 

variables and since we were unable to find a formula that govern this relation between the 

state variable and its derivative; we introduce a new formula for this relation by 

introducing a new Legendre polynomial property called the differentiation operational 

matrix '. This property is given in lemma 1. 

 

Lemma 1 The matrix D is called the differentiation operational matrix of Legendre 

polynomials and is given by 

' =
_̂__
___
_̀0 0 01 0 00 3 0

0 0 00 0 00 0 0
0 0 …0 0 …0 0 …1 0 50 3 01 0 5

0 0 07 0 00 9 0
0 0 …0 0 …0 0 …0 3 01 0 5⋮ ⋮ ⋮

7 0 110 9 0⋮ ⋮ ⋮
0 0 …13 0 …⋮ ⋱ ⋱fgg

ggg
ggh
    (3.12) 

Proof: 

It can be shown that the relationship between /�  and / can be given by  
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/� = '/     (3.13) 

or in matrix form 

 

_̂__
_̀/�
/�(/�)⋮/�8fgg

ggh = _̂_
_̀ �(( �() �(+ ⋯ �(,8O(�)( �)) �)+ ⋯ �),8O(�+(⋮�8O(,(

�+)⋮�8O(,)
�++⋮�8O(,+

⋯ �+,8O(⋯⋯ ⋮�8O(,8O(fg
gg
h

_̂__̀
/
/(/)⋮/8fgg

gh
  (3.14) 

 

where /�
 = 0, /�( = /
 = 1. Using the recurrence relation between /�  and / of Legendre 

polynomials, the elements of the matrix ' can be found easily as follows 

/��O( = (1 + 1)/� + /(/��    (3.15) 

 
Now we are ready to use this property to write a formula for the derivative of the state variable as 

follows 

 �� = [@
  @( …  @8]'/(E)     (3.16) 
 

where /(E) = [/
  /(  … /8]  . 

 

3.3.2 State Parameterization: 

 

The basic idea behind state parameterization is to approximate the state variables by a 

finite length series of Legendre polynomials of the first kind as follows 

 �i = ∑ @7(i)/7(E)879
     j = 1,2, … , 1    (3.17) 

 

where /7(E) is the Legendre polynomial of the i
th

 order of the first kind and @7’s are the 

unknown parameters. The control parameters are determined as a function of the state 

variables unknown parameters from the state equations. The initial conditions of the 

system are replaced by equality constraints. These approximated state and control 

variables are then directly substituted into the system performance index.  

 

If all the state variables of the system are to be approximated directly, then all the state 

equation of the system should be replaced by equality constraints. This would increase the 

system dimension. In order to avoid this, and to decrease the system dimension we will 

follow Jaddu [8] procedure. A set of state variables are directly approximated which 

enable us to find the remaining state and control variables as a function of this set 

variables. If any state equation remains unsatisfied, it will be replaced by  = + 1 equality 

constraints.    

 

Assume in any given problem that the number of state equations that can approximated 

directly is k, where k < 1, then these k equations can be approximated using a finite series 

of Legendre polynomials with unknown parameters as follows 
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�i = ∑ @7(i)/7(E)879
     j = 1,2, … , k    (3.18) 

 

The remaining state and control variables can be found from the system state equations as 

a function of the state parameters in (3.18) and can be expressed in terms of finite series of 

Legendre polynomials with unknown parameters as follows 

 �i = ∑ @7(i)/7(E)879
     j = k + 1, k + 2, … , 1    (3.19) 

 �A = ∑ 67(A)/7(E)879
      B = 1,2, … , <    (3.20) 

 

where the unknown parameters in (3.19) and (3.20) are functions of the unknown 

parameters in (3.18). By this, the dimension of the optimal control problem under 

consideration is reduced. 

 

3.4 Optimal Control Problem Reformulation 

 
As indicated earlier, Legendre polynomials of the first kind are defined on the time 

interval E ∈ [−1,1] and since the optimal control problem under consideration is defined 

on the time interval � ∈ [0, ��] , it is necessary before using Legendre polynomials to 

transform the time interval of the optimal control problem into the interval E ∈ [−1,1]. 
This can be achieved using the following transformation 

 E = )��� − 1     (3.21) 

 

From which we can write 

 �� = ��) �E     (3.22) 

 

Using (3.21) and (3.22), the optimal control problem (3.1)-(3.2) can be reformulated as 

follows: 

Find an optimal controller �∗(E) that minimizes the following performance index 

 � = ��) � (� !� + � ��)�E(.(     (3.23) 

 

subject to the following state equations  

 HlHI = ��) (%�(E) + &�(E))    (3.24) 

 

and initial conditions 

 �(−1) = �
      (3.25) 

 

After transforming the time interval of the optimal control problem into the time interval 

of the Legendre polynomials, we can know parameterize the state variables using a finite 

length series of Legendre polynomial with unknown parameters. As indicated earlier, this 

can be done using the following 
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�i = ∑ @7(i)/7(E)879
     j = 1,2, … , 1   (3.26) 

 

and for the control variables 

 �A = ∑ 67(A)/7(E)879
      B = 1,2, … , <   (3.27) 

 

(3.26) and (3.27) can be rewritten in matrix form as follows 

 

m�(�)⋮��
n = _̂__̀

@
(() @((() … @8(()
@
()) @(()) … @8())⋮@
(�) ⋮@((�) ⋮… ⋮@8(�)fgg

gh o/
/(⋮/8
p    (3.28) 

 

m �(�)⋮��
n = _̂__̀

6
(() 6((() … 68(()
6
()) 6(()) … 68())⋮6
(�) ⋮6((�) ⋮… ⋮68(�)fgg

gh o/
/(⋮/8
p   (3.29) 

 

(2.28) and (2.29) can be also written in compact form  

 � = q/             � = r/    (3.30) 

 

The next step in converting the optimal control problem into a quadratic programming 

problem is to approximate the performance index. Substituting (3.30) into (3.23) yields 

 �s = ��) � (/ q !q/ + / r �r/)�E(.(    (3.31) 

 

where �s is the approximated performance index of �. To simplify computation of (3.31), 

let # = q !q and t = r �r . Then, the value of the approximated performance index �s 
used in (3.31) can be given by the following theorem. 

 

Theorem 1 The value of the approximated performance index �s given in (3.31) is given by 

 �s = ��) ∑ ))7.( (<77 + k77)8O(79(     (3.32) 

 

or 

 �s = ��) (�\@uv(#) + �\@uv(t)) ∑ ))7.(8O(79(    (3.33) 

 

where <77 and k77  are the diagonal elements of the symmetrical matrices # = q !q and t = r �r respectively. 

 

Proof: (3.31) can be rewritten as 

 �s = ��) � (/ #/ + / t/)�E(.(     (3.34) 
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The term / #/ can be written as 

 / #/ = <((/
/
 + 2<()/
/( + 2<(+/
/) + ⋯ + 2<(,8O(/
/8 +<))/(/( + 2<)+/(/) + ⋯ + 2<),8O(/(/8 +<++/)/) + ⋯ + 2<+,8O(/)/8 ⋱                   ⋮ + <8O(,8O(/8/8    (3.35) 

 

Using the integration property of Legendre polynomials 

 � /�(E)/�(E)�E(.( = M0                          1 ≠ <))�O(                    1 = <P  (3.36) 

 

Integration of all terms in (3.35) where /�/� such that < ≠ 1 is zero. The remaining parts 

of (3.35) are given by 

 / #/ = <((/
/
 + <))/(/( + <++/)/) + ⋯ + <8O(,8O(/8/8   (3.37) 

 

Integration of (3.37) can be given by 

 � (<((/
/
 + <))/(/( + <++/)/) + ⋯ + <8O(,8O(/8/8) = ∑ <77 � /7.(/7.(�E(.(8O(79((.(  

 (3.38) 

 

and 

 ∑ <77 � /7.(/7.(�E(.(8O(79( = ∑ <77 ))7.( = �\@uv(#) ∑ ))7.(8O(79(8O(79(   (3.39) 

 

This gives the first part of the previous theorem. ∎  Following the same procedure, 

integration of the second part / t/ can be computed. 

 

The last step in converting the optimal control problem into a quadratic programming 

problem is to approximate the initial conditions. This can be done using the initial value 

property of Legendre polynomials. By substituting E = −1  into (3.26), all initial 

conditions are transformed into algebraic equations of the form 

 @
(,) − @((,) + @)(,) − @+(,) + ⋯ + (−1)8@8(,) − �,(−1) = 0     : = 1,2, … , 1 (3.40) 

 

(3.40) will be considered as an equality constraints imposed on the system under 

consideration.  

 

 (3.32) or (3.33) can be rewritten into a standard quadratic performance index as follows 

 �s = () @ x@     (3.41) 

 

where @ = [@
(()@((() … @8(() @
())@(()) … @8()) … @
(y) … @8(y)]  is the unknown parameter 

vector and x is appositive definite [8] Hessian matrix given by  
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x = zK{sz|}(~)z|�(~)     (3.42) 

where ], j = 0,1, … , = and : = 1,2, … , �. 

By this, the optimal control problem (3.1)–(3.2) is converted into parameters optimization 

problem which is quadratic in terms of the unknown parameters and the new problem can 

be stated as, 

<]1|     () @ x@                                                   (3.43) 

subject to the linear constraints �@ − 6 = 0     (3.44) 

where the linear constraints are due to initial conditions and in some cases are due to some 

system state equations which are not satisfied. The optimal values of the unknown 

parameters vector @∗ can be obtained from the standard quadratic programming method 

[18]  @∗ = x.(� (�x.(� ).(6    (3.45) 

 

Before giving an example that clarifies the proposed method, it is worth to summarize the 

steps that are required to solve a linear quadratic optimal control problem. These steps are: 

1. Change the time interval of the original optimal control problem into E ∈ [−1,1]. 
 

2. Choose a set of state variables that are to be approximated directly using finite series 

of Legendre polynomials with unknown parameters such that the remaining state and 

control variables can be obtained as a function of this set unknown parameters from 

the system state equations. 

 

3. Find the control variables and the state variables that are not directly approximated as 

a function of the directly approximated state variables unknown parameters. 

 

4. Replace state equations that are not yet satisfied by  = + 1 equality constraints. 

 

5. Calculate the matrix # from q !q and the matrix t from r �r. 

 

6. Calculate the approximated performance index �s from (3.32) or (3.33). 

 

7. Determine the Hessian matrix x from (3.42) 

 

8. Determine the set of equality constraints due to system initial conditions, final 

conditions and the equality constraints of step 4. 

 

9. Find the optimal parameters @∗ from (3.45). 
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10. Substitute the optimal parameters from step 9 into (3.26) and (3.27) to find the 

different optimal trajectories (state and control). 

 

3.5 Numerical Example 

 

Find an optimal controller �∗(�) that minimizes the following performance index 

 � = � (�() + �)) + 0.005�))��(
    (3.46) 

subject to 

 ��( = �)                    �((0) = 0    (3.47) 

 ��) = −�) + �        �)(0) = −1   (3.48) 
  

The first step is to convert the time interval into E ∈ [−1,1]. The new problem can be 

restated as 

 

Minimize  

 � = () � ((.( �() + �)) + 0.005�))�E   (3.49) 

 

subject to 

 HlZHI = () �)             �((−1) = 0    (3.50) 

 HlKHI = () (−�) + �)    �)(−1) = −1   (3.51) 

 

We choose to approximate �( by a finite series of order = = 9 (to compare results with 

other methods which use N = 9) with Legendre polynomials of unknown parameters. This 

is done by 

 �((E) = ∑ @7/7(E)�79
      (3.52) 

 ��( can be calculated using (3.16),  

 ��((E) = (@( + @+ + @� + @� + @�)/
 + 3(@) + @V + @� + @�)/( + 5(@+ + @� + @� +@�)/) + 7(@V + @� + @�)/+ + 9(@� + @� + @�)/V + 11(@� + @�)/� + 13(@� + @�)/� +15@�/� + 17@�/�                   (3.53) 

 

From (3.50) �) can be determined, 

 �)(E) = 2(@( + @+ + @� + @� + @�)/
 + 6(@) + @V + @� + @�)/( + 10(@+ + @� + @� +@�)/) + 14(@V + @� + @�)/+ + 18(@� + @� + @�)/V + 22(@� + @�)/� + 26(@� +@�)/� + 30@�/� + 34@�/�             (3.54) 

 

From (3.54) we can determined ��), 
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��)(E) = (6@) + 20@V + 42@� + 72@�)/
 + (30@+ + 84@� + 162@� + 264@�)/( +(70@V + 180@� + 330@�)/) + (126@� + 308@� + 546@�)/+ + (198@� + 468@�)/V +(286@� + 660@�)/� + 390@�/� + 510@�/�                                                                (3.55) 

 

Substituting �)(E) and ��)(E) into (3.51), the control �(E) can be determined, 

 �(E) = 2��) + �)     (3.56) 

 

From which �(E) can be given as �(E) = (2@( + 12@) + 2@+ + 40@V + 2@� + 84@� + 2@� + 144@� + 2@�)/
+ (6@) + 60@+ + 6@V + 168@� + 6@� + 324@� + 6@� + 528@�)/(+ (10@+ + 140@V + 10@� + 360@� + 10@� + 660@� + 10@�)/)+ (14@V + 252@� + 14@� + 616@� + 14@� + 1092@�)/++ (18@� + 396@� + 18@� + 936@� + 18@�)/V+ (22@� + 572@� + 22@� + 1320@�)/� + (26@� + 780@� + 26@�)/�+ (30@� + 1020@�)/� + 34@�/� 
(3.57) 

From the above approximations of �(, �) and �, the matrices # and t can be calculated 

and using the result of theorem 1; the value of the approximated performance index can be 

determined as 

 �s = 34.2@)@� + @
) + 1.68@(@� + 4.3533@() + 0.24@(@) + 8.04@(@+ + 0.8@(@V +8.04@(@� + 8.04@(@� + 2.88@(@� + 8.04@(@� + 12.98@)) + 1.44@)@+ + 28.92@)@V +3.6@)@� + 6.72@)@� + 41.4@)@� + 10.8@)@� + 30.2629@+) + 4.8@+@V + 81.84@+@� +10.08@+@� + 113.04@+@� + 17.28@+@� + 153.84@+@� + 67.9111@V) + 12@V@� +214.8@V@� + 22.4@V@� + 322.8@V@� + 36@V@� + 152.7909@�) + 25.2@�@� +523.8@�@� + 43.2@�@� + 809.4@�@� + 336.4969@�) + 47.04@�@� + 1176.84@�@� +75.6@�@� + 707.3467@�) + 80.64@�@� + 129.6@�@� + 2442.72@�@� + 1404.7788@�) +2636.1526@�)                                                                                                                 (3.58) 

 

Using (3.42), the Hessian can be calculated and eventually the optimal parameters vector @∗ can determined using (3.45). 

 

The last step is to approximate the initial conditions of the problem. This can be done 

using (3.40) and the resulted equality constraints equations are 

 @
 − @( + @) − @+ + @V − @� + @� − @� + @� − @� = 0    (3.59) 

 2@( − 6@) + 12@+ − 20@V + 30@� − 42@� + 56@� − 72@� + 90@� = −1 (3.60)    

 

The difficult dynamic linear quadratic optimal control problem was converted into a 

simpler quadratic programming problem solved by a simple MATLAB program. The 

resulted optimal performance index obtained using this method is illustrated in table (3.1) 

together with the exact value of the problem under consideration and the values of the 

performance index obtained by different methods for comparison. 
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Table (3.1) Minimum values of � for the example 

 

Source J Deviation error 

Exact value 0.06936094 0 

Hsieh [43] 0.0702 8.4 × 10.V 

Neuman and Sen [25] 0.06989 5.3 × 10.V 

Vlassenbroeck [44] 0.069368 7.1 × 10.� 

Jaddu [8] 0.0693689 7.96 × 10.� 

This research 0.0693689 7.96 × 10.� 

  

 

 

The optimal state trajectories and control law are shown in figures (3.1) and (3.2) 

 

 
 

Figure (3.1) optimal state trajectories �((�) and �)(�) 
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Figure (3.2) optimal control �(�)   

 

 

 

3.6 Conclusion 

 

In this chapter, we proposed a numerical method for solving linear quadratic optimal 

control problems. The proposed method is based on parameterizing the system state 

variables using a finite length Legendre polynomials. We also derived an explicit formula 

for the performance index. In addition a new Legendre polynomials property called the 

differentiation operational matrix ' was derived and used to approximate the derivative of 

the state variables. 

 

Compared with other methods and based on the simulation carried out in this work, our 

method gives better or comparable results with other methods. Using this method, the 

difficult linear quadratic optimal control problem is converted into a quadratic 

programming problem that is easy to solve. Using state parameterization, the dimension of 

the optimal control problem is reduced sharply compared with other methods that are 

based on control parameterization or control-state parameterization or even discretization. 

 

Most of the ideas, equations and formulas used in this chapter will be used in the next 

chapter which handles the unconstrained nonlinear quadratic optimal control problems.   
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Chapter Four 

 

 

 

Unconstrained Nonlinear Quadratic Optimal Control Problem 

 
4.1 Introduction 

 

In this chapter, we extend the ideas presented in the previous chapter to handle the 

nonlinear optimal control problem. The basic idea is to use the iteration technique 

developed by Banks [3-7] which replaces the original nonlinear dynamic state equations 

by an equivalent sequence of linear time-varying state equations. By this, the original 

nonlinear quadratic optimal control problem is converted into a sequence of quadratic 

linear time-varying optimal control problems which are much easier to solve.  

 

Many papers that handle the nonlinear optimal control problems using parameterization 

methods have been published. For example, Sirisena [12] used the piecewise polynomials 

to parameterize the control variables. Vlassenbroeck and Van Doreen [13] used the 

control-state parameterization using Chebyshev polynomials to convert the nonlinear 

optimal control problem into a nonlinear mathematical programming problem. In its turn, 

the nonlinear mathematical programming problem can then be solved using different 

methods. One of the popular methods that are used to handle the nonlinear mathematical 

programming problem is the sequential quadratic programming method [46] which 

replaces the nonlinear mathematical programming problem by a sequence of quadratic 

programming problems. 

 

Jaddu [8, 16, 24] proposed a method that is based on state parameterization via Chebyshev 

polynomials and quasilinearization to handle the nonlinear quadratic optimal control 

problems. By this, the original optimal control problem is converted directly into a 

quadratic programming problem. 

 

As indicated earlier, our method is based on replacing the difficult nonlinear dynamic 

system by a sequence of linear time-varying dynamic system using iteration technique [3-

7]. These sequences of linear time-varying systems are to be solved using the method 

proposed in the previous chapter and the method proposed by Jaddu [8, 40] to handle 

linear quadratic optimal control problems; which parameterize the state variables using 

Chebyshev polynomials.  

 

 

 

 



25 

 

4.2 Statement of the Unconstrained Nonlinear Quadratic Optimal Control Problem 

 
The problem treated in this chapter can be stated as follows: Find an optimal control �∗(�); where � ∈ [0, ��], that minimizes the following quadratic performance index: 

 � = � (� !� + � ��)����
     (4.1) 

 

subject to the following system of nonlinear state equations and initial conditions 

 �� = 
(�(�), �(�), �)         �(0) = �
   (4.2) 

 

where � ∈ ��, � ∈ �� , !  is 1 × 1  positive semidefinite matrix, �  is < × <  positive 

definite matrix, �
 ∈ �� and 
 is assumed continuous differentiable function with respect 

to all its arguments.   

   

The proposed method is based on using the iteration technique; in which the nonlinear 

dynamic system (4.1) is to be replaced by a sequence of linear time-varying dynamic 

system. By this, the original nonlinear quadratic optimal control problem described in 

(4.1)-(4.2) is replaced by a sequence of linear quadratic optimal control problems that are 

easier to solve. The resulted linear quadratic time-varying optimal control problems are 

then to be solved using two methods. The first method is based on extending the method 

described in the previous chapter to handle, as a special case, the linear time-varying 

optimal control problems. The second method proposed by Jaddu [8, 40] to handle linear 

time-varying optimal control problems using state parameterization via Chebyshev 

polynomials.    

 

Through combination of iteration technique and state parameterization via Legendre or 

Chebyshev polynomials, the solution of the difficult nonlinear optimal control problem is 

reduced to a simple matrix-vector multiplication as will be seen in the next sections. 

 

4.3 Iteration Technique 

 
This technique was developed by Banks [3-7]. In this technique, the nonlinear system 

described in (4.2) can be replaced by an equivalent sequence of linear time-varying state 

equations. Mathematically, this technique is formulated as follows: The nonlinear system 

in (4.2) can be rewritten in pseudo-linear form [9, 37]: 

 �� = %(�)� + &(�)�       , �(0) = �
    (4.3) 

 

Then, the following sequence of linear time-varying state equations can replace the 

original nonlinear system described in (4.2) and (4.3): 

 �� [
] = %(�
)�[
] + &(�
)�[
],       �[
](0) = �
  (4.4) 

 

and for ] ≥ 1 

 �� [7] = %��[7.(](�)��[7] + &��[7.(](�)��[7] , �[7](0) = �
 (4.5) 
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It can be shown that the above sequence converges to the solution of the original nonlinear 

system if the Lipschitz condition ‖%(�) − %(3)‖ ≤ q‖� − 3‖ is satisfied, where q is the 

Lipschitz constant. The proof for this convergence can be found in [3] or [4]. 

 

Applying the above technique to the optimal control problem described in (4.1)-(4.2), the 

following sequence of linear time-varying quadratic optimal control problems can replace 

the original problem in (4.1) and (4.2): 

 

Minimize 

  �[
] = � (�[
] !�[
] + �[
] ��[
])����
    (4.6) 

 

subject to: 

 �� [
] = %(�
)�[
] + &(�
)�[
],       �[
](0) = �
  (4.7) 

 

and for : ≥ 1 

 

Minimize 

 �[7] = � (�[7] !�[7] + �[7] ��[7])����
     (4.8) 

 

subject to: 

 �� [7] = %��[7.(](�)��[7] + &��[7.(](�)��[7] , �[7](0) = �
  (4.9) 

 

4.4 Problem Reformulation 

 

As indicated earlier, the proposed method in this work converts the optimal control 

problem under consideration directly into a quadratic programming problem. To convert 

the optimal control problem (4.6)-(4.9) into a quadratic programming problem, some state 

variables are approximated by a finite length Chebyshev or Legendre series with unknown 

parameters. The remaining state and control variables are determined as a function of the 

unknown parameters of the state variables from the state equations (4.9). These 

approximations are used to approximate the initial state conditions of the system, which 

will be treated as linear constraints.  

 

Both Chebyshev and Legendre polynomials are defined on the interval E ∈ [−1,1] . 

Therefore, it is necessary to transform the time interval of the original problem � ∈ [0, ��] 
into E ∈ [−1,1]. This can be done using the transformations (3.21)-(3.22) presented in the 

previous chapter. 

 

As a result of applying the transformation (3.21)-(3.22), the optimal control problem (4.6)-

(4.9) can be reformulated and rewritten in terms of E as follows: 

 

Minimize 

  �[
] = ��) � (�[
] !�[
] + �[
] ��[
])�E(.(    (4.10) 
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subject to: 

 Hl[�]HI = ��) (%(�
)�[
] + &(�
)�[
]),       �[
](−1) = �
  (4.11) 

 

and for ] ≥ 1 

 

Minimize 

 �[7] = ��) � (�[7] !�[7] + �[7] ��[7])�E(.(    (4.12) 

 

subject to: 

 HlHI[7] = ��) [% Y�[7.(](E)[ �[7] + & Y�[7.(](E)[ �[7] ], �[7](−1) = �
  (4.13) 

 

To solve the optimal control problems (4.10)-(4.13), we will go into two tracks. The first 

track is to extend the method described in chapter three to handle the linear quadratic time-

varying optimal control problems using state parameterization via Legendre polynomials. 

The second track is to use the method proposed by Jaddu [8, 40] to solve the linear 

quadratic time-varying optimal control problems using state parameterization via 

Chebyshev polynomials. We will then compare the results obtained by both methods 

(tracks). 

 

4.4.1 Solution via Legendre Polynomials: 

 

A look at the optimal control problems (4.10)-(4.13) shows that the 0
th

 iteration (] = 0) 

problem (4.10)-(4.11) is a time-invariant optimal control problem. The solution to this 

problem will be considered as the starting nominal trajectory to the sequence of optimal 

control problems (4.12)-(4.13). The solution to this particular problem was described in 

details in the previous chapter. 

 

To solve the remaining linear time-varying optimal control problems using state 

parameterization via Legendre polynomials, we will extend the method described in the 

previous chapter.  

 

Since the dynamic system (4.13) contains two matrices %(�[7.(](E)) and &(�[7.(](E)) that 

are a function of  E , and to simplify computation it is necessary to express every E 

dependant element in both matrices in terms of a Legendre series of known parameters. To 

this end, let %iA(E) = �(�[7.(](E), E) be the (j, B) element of the matrix %(�[7.(](E)) where �[7.(](E) is the nominal trajectory of the previous iteration. Then the term %iA(E) can be 

expressed in terms of a Legendre series of known parameters of the form [39, 41] 

 %iA(E) = ∑ �7/7(E)�79
     (4.14) 

 

 where the coefficients �7 are given by [39, 41] 

 �7 = )7O() � �(E)/7(E)�E(.(     (4.15) 
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The same approximation can be done for the matrix &(�[7.(](E)) .  

 

Since the elements of  %(�[7.(](E)), &(�[7.(](E)) are time-varying matrices expressed as a 

function of a finite length Legendre polynomials with known parameters of the previous 

iteration, and since the matrix %(�[7.(](E)) is multiplied by �[7]; which is expressed in 

terms of a finite length Legendre series with unknown parameters, and the matrix &(�[7.(](E)) is multiplied by �[7], which is also expressed as a function of a finite length 

Legendre polynomials with unknown parameters, it is necessary to have a multiplication 

algorithm to multiply Legendre series. This algorithm is given by Lemma 1. 

 

Lemma 1 Given two Legendre series 

 � = ∑ �7/7�79
                                                       (4.16) 

 � = ∑ 3i/i�i9
                                                       (4.17) 

 

Then the multiplication of these two Legendre series is a Legendre series of length 1 + < 

given by 

 � ∗ � = ∑ ∑ �73i/7/i�i9
�79
                                  (4.18) 

 

where /7/i is given by [20] 

 /7/i = ∑ QRQ}SRQ�SRQ}U�SR
)7O)i.VWO()7O)i.)WO(iW9
 /7Oi.)W            (4.19) 

 

where ] ≥ j, %W = YZK[WW!  where (@)\ = @(@ + 1)(@ + 2) … (@ + \ − 1), and (@)
 = 1. 

 

By this, the solution of the linear quadratic time-varying optimal control problem is 

reduced into a matrix-vector multiplication algorithm and as a result the proposed 

algorithm in chapter three can now be applied. 

 

4.4.2 Solution via Chebyshev Polynomials: 

 

In this section, we will describe briefly the method proposed by Jaddu [8, 40] to handle 

linear quadratic optimal control problems using state parameterization via Chebyshev 

polynomials of the first type. The steps required to solve the linear quadratic time-varying 

optimal control problems proposed by Jaddu are exactly the same compared to the method 

described in chapter three with differences in the formulas and equations. 

 

As in chapter three, some state variables are to be approximated directly via a finite length 

Chebyshev series with unknown parameters. Mathematically, this can be expressed as 

follows 

 �,(E) = |�(~)) + ∑ @7(,)�7(E)879(           : = 1,2, … , 1  (4.20) 
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where @7’s are the unknown parameters and �7(E) is the i-th order  Chebyshev polynomial 

of the first type and is given by 

 �
(E) = 1     (4.21) 

 �((E) = E     (4.22) 

 

The remaining Chebyshev polynomials can be obtained using the following recurrence 

formula 

 �WO((E) = 2E�W(E) − �W.((E)        \ ≥ 1  (4.23) 

 

To approximate the derivate of the state variables in (4.20), the following equation [8] is 

used 

 ��,(E) = |�́) + ∑ @�́ �7(E)8.(79(     (4.24) 

 

where 

 

� @́8.( = 2=@8                                                           @́8.) = 2(= − 1)@8.(                                           @́W.( = @́WO( + 2\@W               , \ = 1,2, … , = − 2P   (4.25) 

 

The control variables for the system can be obtained as a function of the unknown 

parameters of the state variables. The control variables can be expressed in terms of a 

Chebyshev series by 

 �A(E) = ��(�)) + ∑ 67(A)�7(E)879(           B = 1,2, … , <  (4.26) 

 

Since the dynamic system (4.13) contains two matrices %(�[7.(](E)) and &(�[7.(](E)) that 

are a function of  E , and to simplify computation it is necessary to express every E 

dependant element in both matrices in terms of a Chebyshev series of known parameters. 

To this end, let %iA(E) = �(�[7.(](E), E) be the (j, B) element of the matrix %(�[7.(](E)) 

where �[7.(](E) is the nominal trajectory of the previous iteration. Then the term %iA(E) 

can be expressed in terms of a Chebyshev series of known parameters of the form [18] 

 %iA(E) = ��) + ∑ �7�7(E)�79(      (4.27) 

 

where  

 �i = )� ∑ �(cos(�7)) cos (j�7)�79( ,                  j = 0,1, … , =  (4.28) 

 

and �7 = )7.()� �, ] = 1,2, … , � and � > = 

 

The same approximation can be done for the matrix &(�[7.(](E)) . A look at (4.13) shows 

that %(�[¡.(](E)), &(�[¡.(](E)) are time-varying matrices expressed as a function of finite 
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length Chebyshev series with known parameters of the previous iteration, and since the 

matrix %(�[¡.(](E)) is multiplied by �[¡], which is expressed in terms of Chebyshev series 

with unknown parameters, and the matrix &(�[¡.(](E)) is multiplied by �[¡], which is also 

expressed as a function of Chebyshev polynomials with unknown parameters, it is 

necessary to have a multiplication algorithm to multiply Chebyshev series. This algorithm 

is given by Lemma 2 [8]. 

 

Lemma 2 Given two Chebyshev series 

 � = ∑ �7�7�79
       (4.29) 

 � = ∑ 3i�i�i9
       (4.30) 

 

Then the multiplication of these two Chebyshev series is a Chebyshev series of length 1 + < given by 

 � ∗ � = ∑ ∑ �73i�7�i�i9
�79
     (4.31) 

 

where �7�i =  |}S�|O }U�)      (4.32) 

 

The next step is to approximate the initial condition vector �(−1) = �
. This can be done 

using the following Chebyshev initial value property  

 ��(−1) = (−1)�     (4.33) 

 

Then substituting E = −1 into (4.20) and using the property in (4.33), the initial condition 

vector is approximated as follows 

 |�(~)
) − @((,) + @)(,) − @+(,) + ⋯ + (−1)8@8(,) − �,(−1) = 0     : = 1,2, … , 1 (4.34) 

 

The last step is to approximate the performance index �. To do this, (4.20) and (4.26) are 

rewritten in matrix form 

 

m�(�)⋮��
n = _̂__̀

0.5@
(() @((() … @8(()
0.5@
()) @(()) … @8())⋮0.5@
(�) ⋮@((�) ⋮… ⋮@8(�)fgg

gh o�
�(⋮�8
p   (4.35) 

 

m �(�)⋮��
n = _̂__̀

0.56
(() 6((() … 68(()
0.56
()) 6(()) … 68())⋮0.56
(�) ⋮6((�) ⋮… ⋮68(�)fgg

gh o�
�(⋮�8
p   (4.36) 

 

or in compact form 
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�[,] = q�             �[,] = r�    (4.37) 

 

Substituting (4.37) into (4.12) 

  �s = ��) � (� q !q� + � r �r�)�E(.(   (4.38) 

 

where �s is the approximated value of �. By letting # = q !q and / = r �r and noting 

that both matrices # and / are symmetrical, Jaddu [8] derived an explicit formula for the 

approximated performance index �s  
 �s = �� ∑ ()8O(.,79( �£́7,7O, + <́7,7O,� Y .)()7.)O,)K + .),K.([  (4.39) 

 

where 

 £́7,7O, = M£7,7O,   : ≠ 0¤}})        : = 0 P     (4.40) 

 <́7,7O, = M<7,7O,    : ≠ 0�}})        : = 0 P     (4.41) 

 

where : = 0,2,4, … , = (= v¥v1)¦\ = − 1(=  ¦��) and £7,i , <7,i  are the elements of the 

symmetrical matrices / and # respectivly. 

 

(4.39) can be expressed as, 

 �s = () @ x@     (4.42) 

 

where @ = [@
(()@((() … @8(() @
())@(()) … @8()) … @
(y) … @8(y)]  is the unknown parameter 

vector and x is the positive definite [8] Hessian matrix which can be found using (3.42).                                                            

 

The nonlinear quadratic optimal control problem (4.1)–(4.2) is converted into parameters 

optimization problem which is quadratic in the unknown parameters and the new problem 

can be stated as, 

 <]1|      () @ x@    (4.43) 

 

subject to the linear constraints 

 �@ − 6 = 0     (4.44) 

 

where the linear constraints are due to initial conditions and in some cases are due to some 

system state equations which are not satisfied. The optimal values of the unknown 

parameters vector @∗ can be obtained from (3.45). 

 

The steps required to solve the nonlinear quadratic optimal control problem can be 

summarized in the flow chart of figure (4.1). 
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Figure (4.1) Flow chart for solving nonlinear quadratic OCP 

Start 

�� = %(�)� + &(�)�          �(0) = �
 

Rewrite the dynamic system (4.2) into a pseudo-linear form 

�� [7] = %��[7.(]��[7] + &��[7.(]��[7]   , �[7](0) = �
 

Apply the iteration technique to the pseudo-linear system 

�� [7] = %��[7.(]��[7] + &��[7.(]��[7]   , �[7](0) = �
 

Rewrite the OCP (4.1)-(4.2)  

Minimize � = � (� [7]!�[7] + � [7]��[7])����
  

subject to: 

��[7]�E = ��2 [%��[7.(]��[7] + &��[7.(]��[7]]   , �[7](−1) = �
 

Reformulate the OCP by transforming its time interval into E ∈ [−1,1] 
Minimize              � = ��) � (� [7]!�[7] + � [7]��[7])�E(.(  

subject to: � = ��2 (E + 1) 

Use the formula 

��[
]�E = ��2 [%(�
)�[
] + &(�
)�[
]]   , � [
](−1) = �
 

Set : = 0 and solve the resulted linear quadratic time-invariant OCP 

Minimize              � = ��) � (� [
]!�[
] + � [
]��[
])�E(.(  

subject to: 

�� [(]�E = ��2 [%��∗[
]��[(] + &��∗[
]��[(]]   , �[(](−1) = �
 

Set : = 1 and solve the resulted linear quadratic time-varying OCP 

Minimize              � = ��) � (� [(]!�[(] + � [(]��[(])�E(.(  

subject to: 

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

Step 6 

|�s[7O(] − �s[7]| ≤ § Terminate 

] = ] + 1 

��[7]�E = ��2 [%��[7.(]��[7] + &��[7.(]��[7]]   , �[7](−1) = �
 

Minimize              � = ��) � (� [7]!�[7] + � [7]��[7])�E(.(  

subject to: 

�∗[
], �∗[
], �∗[
]
 

Output 

�∗[(], �∗[(], �∗[(]
 

Output 

Step 7 

Step 8 

NO 
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4.5 Computation Results 

 
In this section, the simulation results of a Van der Pol oscillator problem are illustrated. 

The simulation was carried out using MATLAB software package and the problem was 

solved using Chebyshev and Legendre polynomials. This problem is stated as follows: 

 

Find an optimal controller �∗(�) that minimizes the following performance index 

 � = () � (�() + �)) + �))���
      (4.45) 

 

subject to 

 ��( = �)        , �((0) = 1     (4.46) 

 ��) = −�( + �) − �()�) + �     , �)(0) = 0   (4.47) 

 

Using the technique in section (4.3), the problem can be reformulated as 

 

Minimize 

 �[7] = () � (Y�([7][)�
 + Y�)[7][) + ��[7]�))��   (4.48) 

 

subject to 

 ��([7] = �)[7]        , �([7](0) = 1   (4.49) 

 ��)[7] = −�([7] + ¨1 − Y�([7.(][)© �)[7] + �[7]     , �)[7](0) = 0 (4.50) 

 

and for ] = 0 

 

Minimize 

 

 �[
] = () � (Y�([
][)�
 + Y�)[
][) + ��[
]�))��   (4.51) 

 

subject to 

 ��([
] = �)[
]        , �([
](0) = 1    (4.52) 

 ��)[
] = −�([
] + �[
]     , �)[
](0) = 0   (4.53) 

 

After changing the time interval � ∈ [0,5]  into the time interval E ∈ [−1,1] , �((E)  is 

approximated by a 9
th

 order Chebyshev (Legendre) series, �)(E) is determined from (4.49) 

while �(E) is determined from (4.50). Starting from the linear quadratic time-invariant 

problem (4.51)-(4.53) which will be considered as the starting nominal trajectories, the 

linear quadratic time-varying optimal control problems (4.48)-(4.50) are solved for  i = 5 

iterations. Table (4.1) illustrates the results of the optimal values of the cost function � 

versus iteration ] for Chebyshev and Legendre polynomial.   
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Table (4.1)  � vs. ] for Chebyshev and Legendre Polynomials 
 

Iteration 

i 

J 

N = 9 N = 15 

Chebyshev Legendre Chebyshev Legendre 

0 0.9533622676 0.9533638119 0.9533622624 0.9533622622 

1 1.4516540238 1.4515573659 1.4515286014 1.4515286441 

2 1.4497313124 1.4496686129 1.4496981112 1.4496983487 

3 1.4493918353 1.4493656156 1.4493287644 1.4493288574 

4 1.4494606241 1.4494054733 1.4494047276 1.4494048523 

5 1.4494528889 1.4494004218 1.4493959719 1.4493960944 

 

Note that the optimal values of � using Legendre polynomials are relatively smaller than 

that of using Chebyshev polynomials. But, the convergence speed using Chebyshev 

polynomials is much faster than that of Legendre polynomials. 

 

This problem was solved by Jaddu [8] using quasilinearization and state parameterization 

via Chebyshev polynomials and � was found to be 1.433487. � was found by Bullock and 

Franklin [27] to be 1.433508 using the second variation method. Bashein and Enns [28] 

found � to 1.438097 using quasilinearization and discretization. 
 

Figure (4.2) and (4.3) shows the optimal trajectories of the Van der Pol oscillator problem. 

 

 
 

Figure (4.2) Optimal trajectories of Van der Pol problem using Chebyshev polynomials 
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Figure (4.3) Optimal trajectories of Van der Pol problem using Legendre polynomials 

 

4.6 Conclusion 

 
In this chapter, a numerical technique for solving the unconstrained nonlinear quadratic 

optimal control problem was presented. This method is based on using the iteration 

technique in combination with state parameterization via Legendre or Chebyshev 

polynomials to convert the difficult nonlinear quadratic optimal control problem into a 

sequence of linear quadratic time-varying optimal control problems which are much easier 

to solve. The simulation results carried out using MATLAB software shows the 

effectiveness of the proposed method. The most important property of this method 

compared with other methods is its simplicity. 

 

The method proposed in this chapter will be extended in the next chapter to handle 

different types of constraints imposed on the dynamic system under consideration.   
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Chapter Five 

 

 

 

Constrained Nonlinear Quadratic Optimal Control Problem 

 
5.1 Introduction 

 

Up to this point, the optimal control problems treated in this work were free of constraints. 

However, in practical applications optimal control problems are usually subject to 

different types of constraints. Usually, optimal control problems constraints can be 

classified as follows: 

 

1. Control saturation constraints 

 ª�7� ≤ �(�) ≤ ª�|l     (5.1) 

 

2. State saturation constraints 

 ��7� ≤ �(�) ≤ ��|l     (5.2) 

 

3. Terminal state constraints 

 «������, ��� = 0     (5.3) 

 

4. Interior point constraints 

 ¬(�(�7), �7) = 0             0 ≤ �7 ≤ ��   (5.4) 

 

5. Equality constraints on functions of the state and/or the control variables 

 �(�(�), �(�), �) = 0     (5.5) 

 

6. Inequality constraints on functions of the state and/or the control variables 

 �(�(�), �(�), �) ≤ 0     (5.6) 

 

Existence of constraints imposed on the dynamic system usually complicate the optimal 

control problem. Many text books and papers were published to handle optimal control 

problems subject to different types of constraints. Examples of text books that 
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theoretically treats constrained imposed on the dynamic system are [1-2]. On the other 

hand, [21] is survey paper that review most of the computational methods that were 

published to handle such problems.  

 

Direct methods that can be employed by either discretization or parameterization are 

widely used to convert the constrained optimal control problem to a mathematical 

programming problem. Many direct methods have been proposed to handle the 

constrained nonlinear optimal control problems. For example, Vlassenbroeck [13] used the 

control-state parameterization using Chebyshev polynomials to handle the constrained 

nonlinear optimal control problem. Frick and Stech [22] used the Walsh functions to solve 

the nonlinear optimal control problems subject to saturation constraints. Goh and Teo [21], 

Troch et al. [23] proposed a method to handle the constrained nonlinear optimal control 

problems using control parameterization. Jaddu [8, 16, 24] proposed a method that is 

based on the second method of quasilinearization and the state parameterization via 

Chebyshev polynomials to handle the nonlinear optimal control problems subject to state  

and control saturation constraints. 

 

In this chapter, we will extend the method proposed in the previous chapter to handle the 

constrained nonlinear quadratic optimal control problem. Different types of constrained 

imposed on the dynamic system will be considered. As in the previous chapter, the basic 

idea is to use the iteration technique and the state parameterization via Legendre or 

Chebyshev polynomials to replace the constrained nonlinear quadratic optimal control 

problem by a sequence of constrained linear quadratic time-varying optimal control 

problems, which are easier to solve. 

 

 

5.2 Statement of the Constrained Nonlinear Quadratic Optimal Control Problem 

 
The optimal control problem treated in this chapter can be stated as follows: Find an 

optimal controller �∗(�) that minimizes the following performance index 

 � = ����� ­����� + � (� !� + � ��)����
    (5.7) 

 

subject to the following constraints: 

 

• Dynamic system state equations and initial conditions 

 �� = 
(�(�), �(�), �)          �(0) = �
   (5.8) 

 

• Terminal state constraints 

 «������, ��� = 0    (5.9) 

 

• Saturation state and control constraints 

 �(�) ≤ ��|l    �(�) ≥ ��7�   , �(�) ≤ ª�|l    �(�) ≥ ª�7�  (5.10) 
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where !, ­ are positive semidefinite matrices, � is a positive definite matrix, � ∈ �� is the 

state vector, ��  is the control vector, �
 ∈ ��  is the initial condition vector, 
  is a 

nonlinear continuous differentiable function with respect to all its arguments (�(�), �(�), �) . We will assume that: < ≤ 1 , ��|l, ��7�, ª�7�  and ª�|l  are scalar 

quantities and �� is fixed. 

 

This problem will be solved by converting the constrained nonlinear quadratic optimal 

control problem into a sequence of constrained linear quadratic programming problems, 

which are easier to solve. The solution is based on using the iteration technique; which 

will replace the nonlinear dynamic state equations into equivalent linear time-varying state 

equations. Then, each of these equations will be solved by converting it into a quadratic 

programming problem by using state parameterization via Chebyshev or Legendre 

polynomials.   

 

5.3 Proposed Method 
 

5.3.1 Iteration Technique: 

 

Applying the iteration technique described in the previous chapter on the optimal control 

problem (5.7)-(5.10), the optimal control problem under consideration can be restated as 

follows: 

 

Minimizes 

 �[
] = �����[
] ­�����[
] + � Y�[
] !�[
] + �[
] ��[
][ ����
  (5.11) 

 

subject to the state equations and initial conditions 

 �� [
] = %(�
)�[
] + &(�
)�[
],       �[
](0) = �
  (5.12) 

 

and to the following terminal constraints 

 « Y�����[
], ��[ = 0    (5.13) 

 

and to the following control saturation constraints 

 �(�)[
] ≤ �_<@�     �(�)[
] ≥ �_<]1    , �(�)[
] ≤ ª_<@�     �(�)[
] ≥ ª_<]1  

  (5.14) 

 

And for ] ≥ 1 

 

Minimizes 

 �[7] = �����[7] ­�����[7] + � Y�[7] !�[7] + �[7] ��[7][ ����
   (5.15) 

 

subject to the state equations and initial conditions 
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�� [7] = %��[7.(]��[7] + &��[7.(]��[7],       �[7](0) = �
  (5.16) 

 

and to the following terminal constraints 

 « Y�����[7], ��[ = 0    (5.17) 

 

and to the following control saturation constraints 

 �(�)[7] ≤ �_<@�     �(�)[7] ≥ �_<]1    , �(�)[7] ≤ ª_<@�     �(�)[7] ≥ ª_<]1  

  (5.18) 

 

5.3.2 State parameterization: 

 

The constrained linear time-varying quadratic optimal control problems (5.11)-(5.14) and 

(5.15)-(5.18) can be solved by converting them into a quadratic programming problems 

and then solve them using an available software like MATLAB. To achieve this purpose, 

we will use Legendre polynomials of the first kind or Chebyshev polynomials of the first 

type described in previous chapters to parameterize the state variables. Then, the optimal 

control problem under consideration can be reformulated as follows: 

 

• System state equation parameterization: 

 

Using the information presented in the previous chapters about state 

parameterization, the state and control variables can be approximated via Legendre 

polynomials of finite length = with unknown parameters as follows: 

 �i[7] = ∑ @7(i)/7(E)879
     j = 1,2, . . , 1   (5.19) 

 �A[7] = ∑ 67(A)/7(E)879
     B = 1,2, . . , <   (5.20) 

 

where ] = 0,1,2, … is the iteration sequence number, @’s and 6’s are the unknown 

parameters, and /(E) is a vector of Legendre polynomials of the first kind. (5.19)- 

(5.20) can be rewritten in matrix form as follows: 

 �[7] = q/(E)      (5.21) 

 �[7] = r/(E)      (5.22) 

 

where: 

 

q = _̂__̀
@
(() @((() … @8(()
@
()) @(()) … @8())⋮@
(�) ⋮@((�) ⋮… ⋮@8(�)fgg

gh
     (5.23) 
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r = _̂__̀
6
(() 6((() … 68(()
6
()) 6(()) … 68())⋮6
(�) ⋮6((�) ⋮… ⋮68(�)fgg

gh
    (5.24) 

                              

 

and /(E) = [/
(E) /((E) … /8(E)] .  

  

The same idea can be applied using Chebyshev polynomials of the first type, with 

(5.19)-(5.20) being replaced by 

 �i[7] = |�(�)) + ∑ @7(i)�7(E)879(     j = 1,2, . . , 1   (5.25) 

 �A[7] = ��(�)) + ∑ 67(A)�7(E)879(     B = 1,2, . . , <   (5.26) 

 

Again, (5.25)-(5.26) can be rewritten in matrix form as follows: 

 �[7] = q�(E)      (5.27) 

 �[7] = r�(E)      (5.28) 

 

where: 

 

q = _̂__̀
0.5@
(() @((() … @8(()
0.5@
()) @(()) … @8())⋮0.5@
(�) ⋮@((�) ⋮… ⋮@8(�)fgg

gh
    (5.29) 

 

r = _̂__̀
0.56
(() 6((() … 68(()
0.56
()) 6(()) … 68())⋮0.56
(�) ⋮6((�) ⋮… ⋮68(�)fgg

gh
    (5.30) 

 

where �(E) = [�
(E) �((E) … �8(E)]  is a vector of Chebyshev polynomials of the 

first type. 

 

• Performance index parameterization: 

 

The next step in converting the optimal control problem under consideration into a 

standard programming problem is to approximate the performance index (5.11) 

and (5.15). As indicated in previous chapters, both Legendre and Chebyshev 

polynomials are defined on the time interval E ∈ [−1,1]. For this, it is necessary 

first to change the time interval of the optimal control problem at hand � ∈ [0, ��] 
into E ∈ [−1,1]. This can be done using the transformation equation presented in 

previous chapters.  
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The resulted performance index after the time interval switching is: 

 �[
] = �(1)[
] ­�(1)[
] + ��) � Y�[
] !�[
] + �[
] ��[
][ �E(.(  (5.31) 

 

and for ] ≥ 1 

 �[7] = �(1)[7] ­�(1)[7] + ��) � Y�[7] !�[7] + �[7] ��[7][ �E(.(  (5.32) 

 

Substituting (5.21) and (5.22) in (5.32) yields 

 �s[7] = [/ (1)q ­q/(1)] + ��) � (/ (E)q !q/(E) + / (E)r �r/(E))�E(.(
 (5.33) 

where �s[7]  is the approximated performance index of �[7] . Using the final value 

property of Legendre polynomials at E = 1, (5.33) can be rewritten as 

 �s[7] = q ­q + ��) � (/ (E)q !q/(E) + / (E)r �r/(E))�E(.(  (5.34) 

 

The integration part of (5.34) can be obtained using theorem 1 of chapter three, and 

therefore (5.34) can be reformulated and written as 

 �s[7] = q ­q + ��) ∑ ))7.( (<77 + k77)8O(79(   (5.35) 

 

where <77  and k77  are the diagonal elements of the symmetrical matrices # =q !q and t = r �r respectively. 

 

The same procedure can be applied to approximate the performance index using 

Chebyshev polynomials of the first type. Substituting (5.27) and (5.28) into (5.32) 

yields 
 �s[7] = [� (1)q ­q�(1)] + ��) � (� (E)q !q�(E) + � (E)r �r�(E))�E(.(

 (5.36) 

 

Again, using the final value property of Chebyshev polynomials at E = 1, (5.36) 

can be rewritten as follows 

 �s[7] = q ­q + ��) � (� (E)q !q�(E) + � (E)r �r�(E))�E(.(  (5.37) 

 

The integration part of (3.37) can be obtained using the result obtained by Jaddu 

[8], (5.37) can be rewritten as 

 �s[7] = q ­q + �� ∑ ()8O(.,79( �£́7,7O, + <́7,7O,� Y .)()7.)O,)K + .),K.([ (5.38) 

 

where 



42 

 

£́7,7O, = M£7,7O,   : ≠ 0¤}})        : = 0 P                                                      (5.39) 

 <́7,7O, = M<7,7O,    : ≠ 0�}})        : = 0 P                                                  (5.40) 

 

where : = 0,2,4, … , = (= v¥v1)¦\ = − 1(=  ¦��) and £7,i , <7,i  are the elements of the 

symmetrical matrices / = r �r and # = q !q respectively. 
 

• Initial and terminal state constraints approximation: 

Using the initial value property of Legendre polynomials at E = −1, the initial 

condition vector can be approximated as follows 
   @
(i) − @((i) + @)(i) − @+(i) + ⋯ + (−1)8@8(i) − �i(−1) = 0     j = 1,2, … , 1 (5.41) 

 

where �i(−1) = �
 . Using the same property, it is possible to approximate the 

initial condition vector using Chebyshev polynomials as follows 

 |�(�)
) − @((i) + @)(i) − @+(i) + ⋯ + (−1)8@8(i) − �i(−1) = 0     j = 1,2, … , 1  (5.42) 

 

where �i(−1) = �
. 

   

The same procedure can be applied to approximate the terminal state vector. By 

using the final value property of Legendre polynomials at E = 1, the following 

approximation of the terminal state vector can be obtained 

 @
(i) + @((i) + @)(i) + @+(i) + ⋯ + @8(i) − �i(1) = 0     j = 1,2, … , 1  (5.43) 

 

and using Chebyshev polynomials 

 |�(�)
) + @((i) + @)(i) + @+(i) + ⋯ + @8(i) − �i(1) = 0     j = 1,2, … , 1  (5.44) 

 

where �i(1) = �(�). 

 

• Saturation control and state constraints: 

 

Many methods have been proposed to handle saturation constraints on state or 

control variables. One method is to add a slack variable to the inequality constraint 

to convert them into equality constraints. This method was used by [13]. However, 

using this method would produce two drawbacks: The first is adding a slack 

variable would convert the linear problem into a nonlinear one, while the second 

drawback is the increase in the system dimension due the increase of the unknown 

parameters that is resulted from parameterizing the extra slack variable. 



43 

 

Another method used by [8, 25, 26] is to discretize the time interval E ∈ [−1,1] 
with  \ + 1 discrete points, and satisfy the constraints at each point. By this, every 

continuous constraint is replaced by  \ + 1 constraints. To avoid the drawbacks of 

the slack variables method, we will adopt this method in this work. 

 

Mathematically, the time interval E ∈ [−1,1] is discretized as follows 

 −1 = E
 < E( < E) < ⋯ < EW = 1   (5.45) 

 

Therefore, each of the continuous control saturation constraints is replaced by \ + 1  finite dimension inequality constraints. Using Legendre polynomials, the \ + 1 constraints are given by 

     ∑ 67(A)/7(E¯)879
 ≤ ª�|l    (5.46) 

 − ∑ 67(A)/7(E¯)879
 ≤ −ª�7�       (5.47) 

 

whereas the state saturation constraints are given by  

     ∑ @7(i)/7879
 (E¯) ≤ ��|l    (5.48) 

 − ∑ @7(i)/7879
 (E¯) ≤ −��7�          (5.49) 

 

 

Using Chebyshev polynomials, the control saturation constraints are given by 

    ��(�)
) + ∑ 67(A)�7(E¯)879
 ≤ ª�|l   (5.50) 

  − ��(�)
) − ∑ 67(A)�7(E¯)879
 ≤ −ª�7�   (5.51) 

 

and the state saturation constraints are giving by 

    |�(�)
) + ∑ @7(A)�7(E¯)879
 ≤ ��|l                                   (5.52)  

  − |�(�)
) − ∑ @7(A)�7(E¯)879
 ≤ −��7�   (5.53) 

 

where ? = 0,1,2, … , \. 

 

The difficult constrained nonlinear quadratic optimal control problem is converted into a 

standard constrained quadratic programming problem that can be restated as follows: 

 <]1|     () @ x@    (5.54) 

 

subject to 
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�(@ = 6(     (5.55) 

 �)@ ≤ 6)     (5.56) 

 

where the equality constraints are due to initial conditions, terminal state constraints, and 

in some cases unsatisfied state equations. While the inequality constraints are due to 

saturation constraints of the control and/or the state variables. 

 

The standard quadratic programming problem (5.55)-(5.56) can be solve using any 

available software package. In this work, we use the active set method [18] in MATLAB 

software to solve this problem. 

 

5.4 Computation results 
 

In this section, we will revisit the known Van der Pol oscillator problem solved in the 

previous chapter free of constraints.  

 

The dynamic state equations are: 

 ��( = �)      �((0) = 1     (5.57) 

 ��) = −�( + (1 − �())�) + �     �)(0) = 0  (5.58) 

 

The performance index to be minimized is 

 � = () � (�() + �)) + �))���
      (5.59) 

 

This time, we will consider two cases imposed on this problem, namely: Terminal state 

constraints problem and saturation control constraints problem. 

 

• First case problem: Terminal state constraints 

 �((5) − �)(5) = −1    (5.60) 

 

Based on the proposed solution in this chapter and on the solution of the 

unconstrained problem given in the previous chapter, this problem can be 

reformulated and stated as: 

 

Find an optimal control �∗(�) that minimizes the following performance index: 

 �[7] = �V � (Y�([7][)(.( + Y�)[7][) + ��[7]�))�E   (5.61) 

 

subject to: 

 HlZHI [7] = �) �)[7]        , �([7](−1) = 1       (5.62) 

 HlKHI [7] = �) [−�([7] + ¨1 − Y�([7.(][)© �)[7] + �[7]  ]   , �)[7](−1) = 0  (5.63) 
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�([7](1) − �)[7](1) = −1    (5.64) 

 

and for ] = 0 

 �[
] = �V � (Y�([
][)(.( + Y�)[
][) + ��[
]�))�E   (5.65) 

 

subject to: 

 HlZHI [
] = �) �)[
]        , �([
](−1) = 1    (5.66) 

 HlKHI [
] = �) [−�([
] + �[
]]     , �)[
](−1) = 0   (5.67) 

 �([
](1) − �)[
](1) = −1    (5.68) 

 

This problem were treated by Bullock and Franklin [27] using the second order 

method and � was found to be 1.6857 in seven iteration, while Bashein and Enns 

[28] found � to be 1.6905756 in five iteration. Jaddu [8] solved this problem and � 

was found to be 1.6857113. We solve this problem by using Chebyshev and 

Legendre polynomials. Table (5.1) shows the optimal value of � obtained using 

both Legendre and Chebyshev polynomials versus the iteration number ]. 
 

Table (5.1) approximated optimal value � for the first case 

 

Iteration 

i 

J 

N = 9 N = 15 

Chebyshev Legendre Chebyshev Legendre 

0 1.351722166 1.351722165 1.351722143 1.351722141 

1 1.694713687 1.69467671 1.694622084 1.694622067 

2 1.702286013 1.702260267 1.702252424 1.702252529 

3 1.700999316 1.700974892 1.700940308 1.700940306 

4 1.70104079 1.701016636 1.70098762 1.700987637 

5 1.701022721 1.70099843 1.700968718 1.700968733 

 

 

 

The approximated optimal controller and state trajectories for the first case problem 

using Chebyshev and Legendre polynomials are shown in figures (5.1) and (5.2) 
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Figure (5.1) Optimal control and state trajectories using Chebyshev, case 1 

 

 
 

Figure (5.2) Optimal control and state trajectories using Legendre, case 1 
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• Second case problem: Terminal state constraints and saturation control constraints 

 �((5) = −1     (5.69) 

 �)(5) = 0     (5.70) 

 |�(�)| ≤ 0.75     (5.71) 

 

The second case problem can be reformulated and restated using the proposed 

method as follows: 

 

Find an optimal control �∗(�) that minimizes the following performance index: 

 �[7] = �V � (Y�([7][)(.( + Y�)[7][) + ��[7]�))�E   (5.72) 

 

subject to: 

 HlZHI [7] = �) �)[7]        , �([7](−1) = 1      (5.73) 

 HlKHI [7] = �) [−�([7] + ¨1 − Y�([7.(][)© �)[7] + �[7]  ]   , �)[7](−1) = 0  (5.74) 

 �([7](1) = −1     (5.75) 

 �)[7](1) = 0     (5.76) 

 °�(E)[7]° ≤ 0.75    (5.77) 

 

and for ] = 0 

 �[
] = �V � (Y�([
][)(.( + Y�)[
][) + ��[
]�))�E   (5.78) 

 

subject to: 

 HlZHI [
] = �) �)[
]        , �([
](−1) = 1   (5.79) 

 HlKHI [
] = �) [−�([
] + �[
]]     , �)[
](−1) = 0  (5.80) 

 �([
](1) = −1     (5.81) 

 �)[
](1) = 0     (5.82) 

 °�(E)[
]° ≤ 0.75    (5.83) 

 

Again, Bashein and Enns [28] solved this problem, they obtained � = 2.1439199, 

after seven iteration. This problem also solved by Jaddu [8] using 
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quasilinearization and state parameterization and � was found to be 2.1443893 after 

seven iteration. We solved this problem by the proposed method in which the 

saturation control constrains is satisfied at 21 equally spaced points in the interval [−1,1], namely 

 E = −1, −0.9, −0.8, −0.7, … ,0.7,0.8,0.9,1   (5.84) 

 

Table (5.2) shows the results obtained for the approximated optimal performance 

index using Chebyshev and Legendre polynomials versus the iteration ]. 
 

Table (5.2) Optimal performance index � versus ] 
 

Iteration 

i 

J 

N = 9 N = 15 

Chebyshev Legendre Chebyshev Legendre 

0 1.854040815 1.854040831 1.854044103 1.854040796 

1 2.380623763 2.381162382 2.29577025 2.29574189 

2 2.237530787 2.236824541 2.182965056 2.182873313 

3 2.293293339 2.292189099 2.232657937 2.232578054 

4 2.264423469 2.263384111 2.211405134 2.211388792 

5 2.278922409 2.277806397 2.220946759 2.220823033 

 

 

Figures (5.3) and (5.4) show the approximated optimal control and state 

trajectories for Chebyshev based method and Legendre based method for the 

second case problem.  
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Figure (5.3) Optimal control and state trajectories using Chebyshev, case 2 

 

 
 

Figure (5.4) Optimal control and state trajectories using Legendre, case 2 
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5.5 Practical Application 
 

In this section, we will apply the proposed method of this research to a practical and 

complex problem; the container crane. It is desired to transfer containers at the port of 

Kobe [29] from a ship to a cargo truck. For safety reasons, the objective is to minimize the 

swing during and at the end of the transfer operation.  

 

Without going into the complex modeling aspects of this problem, which can be found in 

details in [29], this problem can be state as follows: 

 

Find an optimal controller �∗(�) that minimizes the following performance index 

 � = () � (�+) + ��)�
 )��     (5.85)  

 

subject to the following state equations  

 ��( = �V      (5.86) 

 ��) = ��      (5.87) 

 ��+ = ��      (5.88) 

 ��V = �( + 17.2656�+     (5.89) 

 ��� = �)      (5.90) 

 ��� = − (lK (�( + 27.0756�+ + 2����)  (5.91) 

 

where 

 

 �(0) = [0,22,0,0, −1,0]     (5.92) 

 �(9) = [10,14,0,2.5,0,0]     (5.93) 

 

and 

 |�((�)| ≤ 2.83374  ∀� ∈ [0,9]   (5.94) 

 −0.80865 ≤ �)(�) ≤ 0.71265  ∀� ∈ [0,9]   (5.95) 

 

with continuous state inequality constraints 

 |�V(�)| ≤ 2.5   ∀� ∈ [0,9]    (5.96) 

 |��(�)| ≤ 1   ∀� ∈ [0,9]    (5.97) 

 

This problem was treated by Sakawa and Shindo [29], but no optimal value was reported. 

Goh and Teo [18] used a piecewise constant functions to parameterize the control 

variables and � was found to be 0.005361. They also used a piecewise linear functions to 
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parameterize the control variables and found � = 0.005412 . Jaddu [8, 24] solved this 

problem using the second method of quasilinearization and state parameterization using 

Chebyshev polynomials, and � was found to be 0.00562 after three iterations. 

 

Using the proposed method, the iteration technique was applied and then the state 

variables �(, �), �+  were approximated by 9
th

 order Chebyshev (Legendre) series with 

unknown parameters. The remaining state variables �V, ��, �� and control variables �(, �) 

are obtained using the first five state equations. All state equations are directly satisfied 

except the last equation which will be replaced by = + 1 equality constraints.  

 

Table (5.3) illustrates the results of simulation carried out on the crane problem using both 

Chebyshev and Legendre polynomials  

 

Table (5.3) App. Optimal values for the crane problem 

 

Iteration ] J 

Chebyshev Legendre 

0 0.00520001274144672 0.005213296926173 

1 0.00564480381208082 0.005647797358452 

2 0.00564480200191086 0.005647752274546 

3 0.00564480041441502 0.005647708914071 

4 0.00564479900640596 0.005647667212744 

 

 

Figure (5.5) and (5.6) shows a set of state trajectories and approximate controls of the 

containers crane problem using Chebyshev and Legendre polynomials 

 

 
 

 

0 1 2 3 4 5 6 7 8 9
0

5

10

15

Time (sec)

x
1

, 
(m

)

0 1 2 3 4 5 6 7 8 9
10

15

20

25

Time (sec)

x
2

, 
(m

)



52 

 

 

 
 

 
 

 
 

 
 

 

0 1 2 3 4 5 6 7 8 9

-4

-2

0

2

Time (sec)

x
3

, 
(d

e
g

re
e

)

0 1 2 3 4 5 6 7 8 9
0

1

2

3

Time (sec)

x
4

, 
(m

/s
)

0 1 2 3 4 5 6 7 8 9
-1.5

-1

-0.5

0

time (sec)

x
5

, 
(m

/s
)

0 1 2 3 4 5 6 7 8 9
-2

0

2

4

Time (sec)

x
6

, 
(d

e
g

re
e

/s
)



53 

 

 
 

      

 
 

Figure (5.5) Optimal controls and state trajectories using Chebyshev polynomials 
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Figure (5.6) Optimal controls and state trajectories using Legendre polynomials 

 

 

5.6 Conclusion 

 
In this chapter, a method for solving the constrained nonlinear quadratic optimal control 

problem has been proposed. This method is based on replacing the nonlinear state 

equation by a sequence of linear time-varying state equations and then parameterizing the 

system state equations by a finite length series of Chebyshev or Legendre polynomials 

with unknown parameters. The inequality constraints of the system are replaced by finite 

dimensions inequality constrains through discretization of the time interval E ∈ [−1,1] 
into an equally spaced point and satisfy the constraints at each point. 

 

To show the effectiveness of the proposed method several examples that include different 

types of constraints were solved including a practical and complex problem; the containers 

crane problem. 
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Chapter Six 

 

 

 

Conclusion and Future Work 

 
6.1 Conclusion 

 

In this work, we proposed a method to solve the nonlinear quadratic optimal control 

problem. In spite of this fact, the proposed method is also suitable for solving linear 

quadratic optimal control problems. The method is based on using the newly introduced 

iteration technique in which the nonlinear state equations are replaced by a sequence of 

linear time-varying state equations. This technique is combined with state 

parameterization in which some system state variables are approximated directly using a 

finite length series of Chebyshev or Legendre polynomials with unknown parameters. The 

remaining state and control variables are obtained from the system state equations. If any 

state equation remains unsatisfied, it will be replaced by equality constraints. 

 

In comparison with other parameterization techniques, namely control-state and control 

parameterization, this method offer several advantages. Examples of such advantages are: 

Low dimension due to small number of unknown parameters required to approximate the 

state and control variables; unlike control parameterization, there is no need to integrate 

the system state equations to obtain the state variable. The optimal control problem under 

consideration is converted directly to a quadratic programming problem without the need 

to convert the problem to the intermediate nonlinear programming problem as the case 

with control parameterization, control-state parameterization and discretization. 

 

Using the proposed method, the optimal control problem under consideration is directly 

converted into a quadratic programming problem. By this, the difficult nonlinear quadratic 

optimal control problem is converted to a sequence of quadratic linear optimal control 

problems that are much easier to solve. 

 

The proposed method was applied to several examples free and subject to different types 

of constraints. The simulation results were good and the proposed method converges. To 

show the effectiveness of the proposed method, a complex practical containers crane 

problem was solved. 

 

A new property for Legendre polynomials called the differentiation operational matrix was 

derived. This property was used to approximate the derivatives of the state variables when 

state parameterization via Legendre polynomials is used. This property can also be used to 
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obtain a feedback control law via Legendre polynomials using the method proposed by 

Jaddu [8, 30].    

 

Comparing the results of simulation obtained using Chebyshev and Legendre polynomials 

shows that the results are almost identical with relatively smaller optimal values of the 

performance index in the case of using Legendre polynomials. However, the results also 

show that the convergence speed when using Chebyshev polynomials is much faster than 

that of using Legendre polynomials. 

 

 

6.2 Future Work 

 
The work done in this thesis can be extended as follows: 

 

• Modify the iteration to produce more accurate results. 

 

• Develop the proposed method to handle the infinite horizon optimal control 

problem by selecting an orthogonal function that is defined orthogonally on the 

interval [0, ∞[. 
 

• Develop the propose method to produce a closed loop feedback control law using 

Legendre polynomials. In this regard we propose using the method proposed by 

Jaddu [30] in which Chebyshev polynomials are used to obtain such a controller. 

The derivation of the differentiation operational matrix for Legendre polynomials 

in this work would facilitate this mission. 
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