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Abstract. This paper presents a numerical method based on quasilinearization and rationalized Haar 

functions for solving nonlinear optimal control problems including terminal state constraints, state 

and control inequality constraints. The optimal control problem is converted into a sequence of 

quadratic programming problems. The rationalized Haar functions with unknown coefficients are 

used to approximate the control variables and the derivative of the state variables. By adding artificial 

controls, the number of state and control variables is equal. Then the quasilinearization method is 

used to change the nonlinear optimal control problems with a sequence of constrained 

linear-quadratic optimal control problems. To show the effectiveness of the proposed method, the 

simulation results of two constrained nonlinear optimal control problems are presented. 

1. Introduction 

A widely used method to solve optimal control problems is the direct method. The direct method 

converts the optimal control problem into a mathematical programming problem with a large number 

of parameters and equality constraints [1-4]. In order to solve these problems, Hussein Jaddu [5] 

proposed a method to solve the linear-quadratic and the nonlinear optimal control problems by using 

Chebyshev polynomials to approximate the state variables. Also shifted Legendre polynomials to 

parameterize the derivative of each of the state variables are introduced to solve the linear-quadratic 

optimal control problem in [6]. 

In this paper we present a computational method for solving nonlinear optimal control problems 

with state and control inequality. The quasilinearization technique is applied to convert the 

constrained optimal control problems into a sequence of constrained linear-quadratic optimal control 

problems. Then by applying the Haar wavelets functions to approximate the control variables and the 

derivative of the state variables, the constrained linear-quadratic optimal control problems are 

transformed into quadratic programming problems and are well solved. 

2. Review of Some Properties of Haar Wavelets 

2.1 Haar functions 

The Haar function ( ), 1, 2,3,rH t r = … are composed of three values +1, -1and 0 can be defined on 

the interval [0,1) as [7] 
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The value of r defines two parameters i  and j via 2 1, 0,1,2,3, , 1, 2,3, ,2 .i ir j i j= + − = … = …  

0 ( )H t is defined for 0i j= =  and is given by 0 ( ) 1, 0 1.H t t= <�  
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The orthogonality property is given by 
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where 2 1, 0,1,2,3, , 1, 2,3, , 2 .n nv m n m= + − = … = …  

2.2 Function approximation 

A function 2( ) [0,1]f t L∈ , may be expanded into Haar functions as  

0
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r

f t w H t
∞

=

= ∑
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where rw  are given by 
1

0
2 ( ) ( ) , 0,1, 2, ,i

r rw f t H t dt r= = …∫ with 2 1, 0,1,2,3, , 2i ir j i= + − = … , and 

0r =  for  0i j= = . The series in Eq.(3) contains infinite terms. If, we let 0,1, 2,3, ,i α= …  then the 

infinite series in Eq.(3) is truncated up to its first s  terms as 
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The Haar wavelet functions coefficient vector  and Haar wavelet functions vector  are 

defined as 

0 1 1[ , , , ] ,T

sW α α α −= …
          (5) 

0 1 1( ) [ ( ), ( ), , ( )] ,T

st t t tφ φ φ φ −= …
         (6) 

( ) ( ), 0,1,2, , 1.r rt H t r sφ = = … −
         (7)  

In Eq.(5) the row denotes the order of the Haar functions. The matrix ˆ
k kφ ×  can be expressed as 

� ( ) ( ) ( )1/ 2 , 3 / 2 , , (2 1) / 2 .s s s s s sφ φ φ φ×  = … −         (8) 

By using Eqs.(4) and (8) we get 
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2.3 Integration of Haar wavelets 

The integration of the ( )tφ  is given by 
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0
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t

t dt P tφ φ∫ �            (11) 

where s sP P×=  is the s s×  is the s s× operational matrix for integration and is given in [9] as 
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with �1 1 1 1[1] and 1/ 2Pφ × ×= =  respectively. 
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3. Problem statement 

The problem we are considering is to find the control vector ( )u τ , and the corresponding state vector 

( )x τ ,  [0, ]ftτ ∈ , which minimize (or maximize) the functional  

( ) ( ) ( ) ( )( )
0

,
ft T T

J x t Qx t u t Ru t dt= +∫
        (13) 

subject to 
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       (14) 
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           (15) 
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          (16) 
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          (17) 

where ( ) nx Rτ ∈  and ( ) mu Rτ ∈ , are state vector and control vector, respectively. 0x is the initial 

condition vector. Q is a positive semi definite matrix,  R is a positive definite matrix. The vector 

relation ( ) maxu uτ �  means that a coordinate ,( )i max iu uτ � . Also, ft denotes the final time. The vector 

function f  is generally nonlinear and assumed to be smooth with respect to x  and u .  It is assumed 

that the problem (13)-(18) has a unique solution. 

4. Quasilinearization 

Then the optimal control problem (13)-(17) can be replaced with the following sequence of 

constrained linear-quadratic optimal control problems 
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we assume that m n=  and ( )kB k  is invertible for all [0, ]ft t∈ . When the assumption is not  

satisfying and m n< , an artificial control vector ( )z τ  of dimension ( ) 1n m− ×  is added to modify 

( )kB τ . Then, the  ( )kB τ  is changed into  ( )k

newB t  as follow 

( )

( ) ( ) ,
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τ τ
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× −

 
 

=  
  

         (26) 

where n mI −  is ( ) ( )n m n m− × −  identity matrix, ( )m n mO × − is a zero matrix. Correspondingly, the 

control vector 
1( )ku τ+

 is modified to 1( )k

newu τ+  as follow 

1

1
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τ
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+
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          (27) 

and the performance index is modified to 

1 1

0

ˆ .
ftk k TJ J z Lzdτ+ += + ∫

          (28) 

5. Problem reformulation 

The time transformation ft tτ =  is introduced in order to use Haar functions defined on [0,1]t ∈ . 

Using this transformation and expressing the optimal control problem (18)-(22) in terms of t , we get 

Minimize 

( )1
1 1 1 1 1

0
.k k T k k T k

fJ t x Qx u Ru dt+ + + + += +∫         (29) 

subject to 

1 1 1 1 1

0( ) ( ) ( ) ( ), (0) ,k k k k k k k

ft dx dt A t x B t u h t x x− + + + += + + =
     (30) 
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       (31) 
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� �

          (32) 
1 1( ) , ( ) .k k

max minx t x x t x+ +
� �

          (33) 

Approximating each of the system dynamic functions and control variables by  Haar series with 

unknown parameters gives 

1 ˆ( ) ( ) ,k Tx t t Mφ+ =�
           (34) 

ˆ( ) ( ),t I tφ φ= ⊗            (35) 

1 2, ,, ,T T T

nM M M M =  �
,          (36) 

where I is a  n n×  dimensional identity matrix, ( )tφ is 1s× vector ( 12 , 0,1,2,s α α+= = � ) , φ̂ is a 

matrix of order ns n×  , M is a 1ns×  dimensional vector, and ⊗  denotes Kronecker product. ( )tφ is a 

Haar functions vector which is defined as  

[ ]0 1 1
( ) ( ), ( ), , ( ) .

s
t t t tφ φ φ φ −= �

         (37) 
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Also we have 

ˆ(0) ( ) ,x t dφ=            (38) 

where
1 2
, , , .

T
T T T

n
d d d d =  �  is a vector of order .  

Using the Haar functions' integration operational matrix P , 1kx +  can be determined 

( ) ( )' '1

0

ˆ ˆ ˆ( ) (0) ( ) ( ) .
ftk T T T T Tx t x t Mdt I t I P M P Mφ φ φ+ − = = ⊗ ⊗ =∫     (39) 

where P  is an operational matrix of integration given in Eq.(12). 

From Eqs.(39) and (43) we obtain 

( ) ( ) ( )1 ˆ ˆ ˆ ˆ( ) ( ) ( ) ( )
k T T T T T T

x t t d P M I d P M I d P Mφ φ φ+ = + = ⊗ + = ⊗ + ,    (40) 

From Eqs.(32),(40) and (41), the control variables 1ku +  can be determined as a function of the 

unknown parameters of the state variables as follows 
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The performance index can be approximated by substituting Eqs.(41) and (42) into Eq.(28) to get 
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where
1k

NJ +
  is the approximate value of 1kJ + , ( )1 1( ) (( ) ) ( )k T kF t B R B− −= . Eq.(44) can be simplified to 
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which can be rewritten as 

1
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where 

( ) ( )

2

1

1

1

0

1ˆ ˆ ˆ( ) (2 ( ) 2 ( ( ) ) 2 ( ( ) ( ) )

ˆ ˆ ˆ( ( )) ( ) 2 ( ( )) ( ) ( )

)

2 ) ,(

T T T k T T

f f f

k T T k T k T T

f

C t P Q P t F t t F t A t P

t P A t F t P A t F t A t P dt

φφ φφ φφ

φφ φφ

− −

−

= ⊗ + ⊗ − ⊗

− ⊗ + ⊗ 

∫
              (45) 

( ) ( )
( ) ( )

1

2

1

1

0

ˆ ˆ2 ( ) ( ( )) ( ) 2 ( ( )) ( ) ( )

ˆ2 ( ) ( ) 2

2

( ) ( ) ( )

( )

( ,)

T T T T k T T T k T k T T

f f

k T T k T k T T

f

C t d Q P t d A t F t d A t F t A t P

t h F t h F t A t P dt

φφ φφ φφ

φ φ

−

−

= ⊗ − ⊗ + ⊗

− ⊗ + ⊗ 

∫

  
             (46) 

( )
( ) ( )

1

3
0

( ) ( ( )) ( ) ( )

( ( )) ( ) ( ) ( ) ( ) ( ) ( ) ( ) .

T T T k T k T

f

T k T k k T k T k T k

C t d Q d d A t F t A t d

d A t F t h t h F t A t d h F t h dt

φφ φφ

φ φ

= ⊗ + ⊗

+ ⊗ + ⊗ + 

∫

   (47) 

The terminal equality state constraints can be approximated by substituting Eq.(41) into Eq.(31) as 

follows 

( ) ( )( )ˆ(1),1 ( ) (1),1 ( ) (1) ( (1),1),k T T k T k k

x x x xx I P M x I d x xψ φ ψ φ ψ⊗ = − ⊗ − −    (48) 

Then we approximate the inequality constraints of the optimal problem. These constraints can be 

handled by requiting their satisfaction at a finite number of discrete points, 0 1 10 1Nt t t −= < < < =� . 

By substituting Eqs.(41) and (42) into Eqs.(34) and (33) respectively, we get 
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From the previous reformulation, the optimal control problem (28)-(33) can be approximated by 

the following quadratic programming problem 
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Problem (49)-(55) is a standard quadratic programming problem. 

After obtaining the optimal solution of the unknown parameters M , we substitute these parameters 

into (41) and (42) to obtain the new nominal states ( )kx t  and nominal control ( )ku t  to be used in the 

next iteration. These new nominal trajectories have to be substituted in Eqs.(28)-(33) to get the next 

constrained linear quadratic optimal control problem. This procedure has to be repeated until an 

acceptable convergence is achieved. In this paper, the computation is terminated, when the following 

criterion is satisfied 
1| | ,k k

N NJ J+ − < ε where  ε  is a sufficiently small required number. 

6. Numerical simulations 

In this section, we consider the Van der Pol oscillator problem. This example is adapted from [5] and 

studied by using Chebyshev method. Find the control vector ( )u t  which minimizes and the following 

terminal state constraints and inequality control constraints 

( )5
2 2 2

1 2
0

1
,

2
J x x u dτ= + +∫

 

subject to  

Table 1. Simulation results  

Methods 1ˆ kJ +  

Quasilinearization and Chebyshev polynomials  

N=6 2.26330 

N=6 2.16015 

N=6 2.14208 

Present  

k=16 2.17857 

k=16 2.15950 

k=16 2.14959 

  

Fig 1. Optimal state trajectories.                             Fig 2. Optimal control. 
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1 2 2 1 1 2

1 1 2 2

, (1 ) ,

(5) 1 0, (5) 0,

| ( ) | 0.75.

x x x x x x u

x x

u t

Ψ Ψ

= = − + − +

= + = = =

� �

�  
In Table.1, we compared the optimal solutions obtained using the proposed method with other 

solutions in the literature. For 64k = , the computational results for 1 2( ), ( ), ( )x t x t u t  and ( )z t  are 

given in Figs.1 and 2, respectively. 

7. Conclusion 

In this paper, we develop an efficient method for solving nonlinear optimal control problems with 

terminal constraints, state inequality constraints and inequality control constraints. The technique is 

based on approximation of both the controls and the derivative of the state into Haar series and 

converting the optimal control problem into a sequence of linear-quadratic optimal control problems. 

Illustrative examples are included to demonstrate the effectiveness of the proposed method. 
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