24,539 research outputs found

    Enhanced nonlinear imaging through scattering media using transmission matrix based wavefront shaping

    Full text link
    Despite the tremendous progresses in wavefront control through or inside complex scattering media, several limitations prevent reaching practical feasibility for nonlinear imaging in biological tissues. While the optimization of nonlinear signals might suffer from low signal to noise conditions and from possible artifacts at large penetration depths, it has nevertheless been largely used in the multiple scattering regime since it provides a guide star mechanism as well as an intrinsic compensation for spatiotemporal distortions. Here, we demonstrate the benefit of Transmission Matrix (TM) based approaches under broadband illumination conditions, to perform nonlinear imaging. Using ultrashort pulse illumination with spectral bandwidth comparable but still lower than the spectral width of the scattering medium, we show strong nonlinear enhancements of several orders of magnitude, through thicknesses of a few transport mean free paths, which corresponds to millimeters in biological tissues. Linear TM refocusing is moreover compatible with fast scanning nonlinear imaging and potentially with acoustic based methods, which paves the way for nonlinear microscopy deep inside scattering media

    Modern optical astronomy: technology and impact of interferometry

    Get PDF
    The present `state of the art' and the path to future progress in high spatial resolution imaging interferometry is reviewed. The review begins with a treatment of the fundamentals of stellar optical interferometry, the origin, properties, optical effects of turbulence in the Earth's atmosphere, the passive methods that are applied on a single telescope to overcome atmospheric image degradation such as speckle interferometry, and various other techniques. These topics include differential speckle interferometry, speckle spectroscopy and polarimetry, phase diversity, wavefront shearing interferometry, phase-closure methods, dark speckle imaging, as well as the limitations imposed by the detectors on the performance of speckle imaging. A brief account is given of the technological innovation of adaptive-optics (AO) to compensate such atmospheric effects on the image in real time. A major advancement involves the transition from single-aperture to the dilute-aperture interferometry using multiple telescopes. Therefore, the review deals with recent developments involving ground-based, and space-based optical arrays. Emphasis is placed on the problems specific to delay-lines, beam recombination, polarization, dispersion, fringe-tracking, bootstrapping, coherencing and cophasing, and recovery of the visibility functions. The role of AO in enhancing visibilities is also discussed. The applications of interferometry, such as imaging, astrometry, and nulling are described. The mathematical intricacies of the various `post-detection' image-processing techniques are examined critically. The review concludes with a discussion of the astrophysical importance and the perspectives of interferometry.Comment: 65 pages LaTeX file including 23 figures. Reviews of Modern Physics, 2002, to appear in April issu

    Initial synchronisation of wideband and UWB direct sequence systems: single- and multiple-antenna aided solutions

    No full text
    This survey guides the reader through the open literature on the principle of initial synchronisation in single-antenna-assisted single- and multi-carrier Code Division Multiple Access (CDMA) as well as Direct Sequence-Ultra WideBand (DS-UWB) systems, with special emphasis on the DownLink (DL). There is a paucity of up-to-date surveys and review articles on initial synchronization solutions for MIMO-aided and cooperative systems - even though there is a plethora of papers on both MIMOs and on cooperative systems, which assume perfect synchronization. Hence this paper aims to ?ll the related gap in the literature

    Methods for detection and characterization of signals in noisy data with the Hilbert-Huang Transform

    Full text link
    The Hilbert-Huang Transform is a novel, adaptive approach to time series analysis that does not make assumptions about the data form. Its adaptive, local character allows the decomposition of non-stationary signals with hightime-frequency resolution but also renders it susceptible to degradation from noise. We show that complementing the HHT with techniques such as zero-phase filtering, kernel density estimation and Fourier analysis allows it to be used effectively to detect and characterize signals with low signal to noise ratio.Comment: submitted to PRD, 10 pages, 9 figures in colo

    Robust Positioning in the Presence of Multipath and NLOS GNSS Signals

    Get PDF
    GNSS signals can be blocked and reflected by nearby objects, such as buildings, walls, and vehicles. They can also be reflected by the ground and by water. These effects are the dominant source of GNSS positioning errors in dense urban environments, though they can have an impact almost anywhere. Non- line-of-sight (NLOS) reception occurs when the direct path from the transmitter to the receiver is blocked and signals are received only via a reflected path. Multipath interference occurs, as the name suggests, when a signal is received via multiple paths. This can be via the direct path and one or more reflected paths, or it can be via multiple reflected paths. As their error characteristics are different, NLOS and multipath interference typically require different mitigation techniques, though some techniques are applicable to both. Antenna design and advanced receiver signal processing techniques can substantially reduce multipath errors. Unless an antenna array is used, NLOS reception has to be detected using the receiver's ranging and carrier-power-to-noise-density ratio (C/N0) measurements and mitigated within the positioning algorithm. Some NLOS mitigation techniques can also be used to combat severe multipath interference. Multipath interference, but not NLOS reception, can also be mitigated by comparing or combining code and carrier measurements, comparing ranging and C/N0 measurements from signals on different frequencies, and analyzing the time evolution of the ranging and C/N0 measurements
    corecore