23,186 research outputs found

    Direct numerical simulation of reacting flows

    Get PDF
    The objectives of this work are: (1) to extend the technique of direct numerical simulations to turbulent, chemically reacting flows, (2) to test the validity of the method by comparing computational results with laboratory data, and (3) to use the simulations to gain a better understanding of the effects of turbulence on chemical reactions. The effects of both the large scale structure and the smaller scale turbulence on the overall reaction rates are addressed. The relationship between infinite reaction rate and finite reaction rate chemistry is compared with some of the results of calculations with existing theories and laboratory data. The direct numerical simulation method involves the numerical solution of the detailed evolution of the complex turbulent velocity and concentration fields. Using very efficient numerical methods (e.g., pseudospectral methods), the fully nonlinear (possibly low pass filtered) equations of motion are solved and no closure assumptions or turbulence models are used. Statistical data are obtained by performing spatial, temporal, and/or ensemble averages over the computed flow fields

    Implementation and Validation of a Computationally Efficient DNS Solver for Reacting Flows in OpenFOAM

    Get PDF
    To meet future climate goals, the efficiency of combustion devices has to be increased. This requires a better understanding of the underlying physics. The simulation of turbulent flames is a challenge because of the multi-scale nature of combustion processes: relevant length scales span over five orders of magnitude and time scales over more than ten. Because of this, the direct numerical simulation (DNS) of turbulent flames is only possible on large supercomputers. A DNS solver for chemically reacting flows implemented in the open-source framework OpenFOAM is presented. The thermo-chemical library Cantera is used to compute detailed transport coefficients based on kinetic gas theory. The multi-scale nature of time scales, which are much lower for the combustion chemistry than for the flow, are bridged by an operator splitting approach, which employs the open-source solver Sundials to integrate chemical reaction rates. Because the direct simulation of turbulent flames has to be performed on supercomputers, special care has been taken to improve the computational performance. A tool was developed which generates highly optimized C++ source code for the computation of chemical reaction rates. Additionally, a load balancing approach specifically made for the computation of chemical reaction rates is employed. In total, these optimizations can reduce total simulation times by up to 70 %. The accuracy of the new solver is assessed from different canonical testcases: 2D and 3D Taylor-Green vortex simulations show that the solver can reach up to fourth order convergence rates and that results differ by less than 1 % when compared to spectral DNS codes. Molecular diffusion and chemical reaction rates are compared to solutions of 1D flames from Cantera, showing perfect agreement. The solver is used to simulate the Sydney/Sandia burner. The simulation is performed on one of Germany\u27s largest supercomputer on 28 800 CPU cores, employing 150 million cells and a chemical reaction mechanism with 19 species and about 200 reactions. Comparison with experimental data shows excellent agreement for time averaged and RMS values

    The combustion program at CTR

    Get PDF
    Understanding and modeling of turbulent combustion are key problems in the computation of numerous practical systems. Because of the lack of analytical theories in this field and of the difficulty of performing precise experiments, direct numerical simulation (DNS) appears to be one of the most attractive tools to use in addressing this problem. The general objective of DNS of reacting flows is to improve our knowledge of turbulent combustion but also to use this information for turbulent combustion models. For the foreseeable future, numerical simulation of the full three-dimensional governing partial differential equations with variable density and transport properties as well as complex chemistry will remain intractable; thus, various levels of simplification will remain necessary. On one hand, the requirement to simplify is not necessarily a handicap: numerical simulations allow the researcher a degree of control in isolating specific physical phenomena that is inaccessible in experiments. CTR has pursued an intensive research program in the field of DNS for turbulent reacting flows since 1987. DNS of reacting flows is quite different from DNS of non-reacting flows: without reaction, the equations to solve are clearly the five conservation equations of the Navier Stokes system for compressible situations (four for incompressible cases), and the limitation of the approach is the Reynolds number (or in other words the number of points in the computation). For reacting flows, the choice of the equations, the species (each species will require one additional conservation equation), the chemical scheme, and the configuration itself is more complex

    Large Eddy Simulations of gaseous flames in gas turbine combustion chambers

    Get PDF
    Recent developments in numerical schemes, turbulent combustion models and the regular increase of computing power allow Large Eddy Simulation (LES) to be applied to real industrial burners. In this paper, two types of LES in complex geometry combustors and of specific interest for aeronautical gas turbine burners are reviewed: (1) laboratory-scale combustors, without compressor or turbine, in which advanced measurements are possible and (2) combustion chambers of existing engines operated in realistic operating conditions. Laboratory-scale burners are designed to assess modeling and funda- mental flow aspects in controlled configurations. They are necessary to gauge LES strategies and identify potential limitations. In specific circumstances, they even offer near model-free or DNS-like LES computations. LES in real engines illustrate the potential of the approach in the context of industrial burners but are more difficult to validate due to the limited set of available measurements. Usual approaches for turbulence and combustion sub-grid models including chemistry modeling are first recalled. Limiting cases and range of validity of the models are specifically recalled before a discussion on the numerical breakthrough which have allowed LES to be applied to these complex cases. Specific issues linked to real gas turbine chambers are discussed: multi-perforation, complex acoustic impedances at inlet and outlet, annular chambers.. Examples are provided for mean flow predictions (velocity, temperature and species) as well as unsteady mechanisms (quenching, ignition, combustion instabil- ities). Finally, potential perspectives are proposed to further improve the use of LES for real gas turbine combustor designs

    Statistical analysis of the velocity and scalar fields in reacting turbulent wall-jets

    Full text link
    The concept of local isotropy in a chemically reacting turbulent wall-jet flow is addressed using direct numerical simulation (DNS) data. Different DNS databases with isothermal and exothermic reactions are examined. The chemical reaction and heat release effects on the turbulent velocity, passive scalar and reactive species fields are studied using their probability density functions (PDF) and higher order moments for velocities and scalar fields, as well as their gradients. With the aid of the anisotropy invariant maps for the Reynolds stress tensor the heat release effects on the anisotropy level at different wall-normal locations are evaluated and found to be most accentuated in the near-wall region. It is observed that the small-scale anisotropies are persistent both in the near-wall region and inside the jet flame. Two exothermic cases with different Damkohler number are examined and the comparison revealed that the Damkohler number effects are most dominant in the near-wall region, where the wall cooling effects are influential. In addition, with the aid of PDFs conditioned on the mixture fraction, the significance of the reactive scalar characteristics in the reaction zone is illustrated. We argue that the combined effects of strong intermittency and strong persistency of anisotropy at the small scales in the entire domain can affect mixing and ultimately the combustion characteristics of the reacting flow

    Large Eddy Simulations (LES) and Direct Numerical Simulations (DNS) for the computational analyses of high speed reacting flows

    Get PDF
    The principal objective is to extend the boundaries within which large eddy simulations (LES) and direct numerical simulations (DNS) can be applied in computational analyses of high speed reacting flows. A summary of work accomplished during the last six months is presented

    Turbulent mixing

    Get PDF
    The ability of turbulent flows to effectively mix entrained fluids to a molecular scale is a vital part of the dynamics of such flows, with wide-ranging consequences in nature and engineering. It is a considerable experimental, theoretical, modeling, and computational challenge to capture and represent turbulent mixing which, for high Reynolds number (Re) flows, occurs across a spectrum of scales of considerable span. This consideration alone places high-Re mixing phenomena beyond the reach of direct simulation, especially in high Schmidt number fluids, such as water, in which species diffusion scales are one and a half orders of magnitude smaller than the smallest flow scales. The discussion below attempts to provide an overview of turbulent mixing; the attendant experimental, theoretical, and computational challenges; and suggests possible future directions for progress in this important field

    Hydrodynamic instabilities in gaseous detonations: comparison of Euler, Navier–Stokes, and large-eddy simulation

    Get PDF
    A large-eddy simulation is conducted to investigate the transient structure of an unstable detonation wave in two dimensions and the evolution of intrinsic hydrodynamic instabilities. The dependency of the detonation structure on the grid resolution is investigated, and the structures obtained by large-eddy simulation are compared with the predictions from solving the Euler and Navier–Stokes equations directly. The results indicate that to predict irregular detonation structures in agreement with experimental observations the vorticity generation and dissipation in small scale structures should be taken into account. Thus, large-eddy simulation with high grid resolution is required. In a low grid resolution scenario, in which numerical diffusion dominates, the structures obtained by solving the Euler or Navier–Stokes equations and large-eddy simulation are qualitatively similar. When high grid resolution is employed, the detonation structures obtained by solving the Euler or Navier–Stokes equations directly are roughly similar yet equally in disagreement with the experimental results. For high grid resolution, only the large-eddy simulation predicts detonation substructures correctly, a fact that is attributed to the increased dissipation provided by the subgrid scale model. Specific to the investigated configuration, major differences are observed in the occurrence of unreacted gas pockets in the high-resolution Euler and Navier–Stokes computations, which appear to be fully combusted when large-eddy simulation is employed
    corecore