33 research outputs found

    Single-fiber lightwave centralized WDM-OFDMA- PON with colorless optical network units

    Get PDF
    We propose and experimentally demonstrate a carrier-reuse, single-feeder, wavelength-division-multiplexed, orthogonal-frequency-division-multiple-access passive optical network (WDM-OFDMA-PON) with colorless direct-detection optical network units and coherent detection optical line terminals. We examine two strategies by adjusting the frequency occupancy and the modulation format of the uplink (UL) and downlink (DL) signals. We investigate the impact of DL signal-to-carrier ratio on performance of both UL and DL via simulations and identify impairments limiting system performance. As a proof of concept, we demonstrate on a single wavelength channel, a realization of each of the two scenarios investigated using orthogonal-frequency-division-multiplexing (OFDM). A quadrature phase-shift keying approach with wide spectrum and narrow guard band achieves 21.6 Gb/s. A 32-ary quadrature amplitude modulation approach with narrow spectrum and wide guard band achieves 14.5 Gb/s and a span of over 80 km

    Orthogonal frequency division multiplexing for optical access networks

    Get PDF
    Orthogonal Frequency Division Multiplexing (OFDM) is a modulation scheme with numerous advantages that has for years been employed as the leading physical interface in many wired and wireless communication systems. Recently, with advancements made in digital signal processing, there has been a surge of interest in applying OFDM techniques for optical communications. This thesis presents extensive research on optical OFDM and how it is being applied in access networks. With the aid of theoretical analysis, simulations and experiments, it is shown that the system performance of direct-detection optical OFDM (DD-OOFDM) in the presence of MZM non-linear distortion can be improved by proper biasing and selection of appropriate drive to the MZM. Investigations are conducted to illustrate how a variation in the number of subcarriers and the modulation format influences the sensitivity of the DD-OOFDM system to the MZM non-linear distortion. The possibility of improving the spectral efficiency by reduction of the width of the guard band is also investigated. This thesis also looks into the radio-over-fibre (RoF) transmission of Multiband OFDM UWB as a transparent and low-cost solution for distributing multi-Gbit/s data to end-users in FTTH networks. Due to relaxed regulatory requirements and the wide bandwidth available, UWB operation in the 60-GHz band is also considered for this FTTH application scenario. Four techniques for enabling MB-OFDM UWB RoF operation in the 60-GHz band are experimentally demonstrated. The impacts of various parameters on the performance of the techniques as well as the limitations imposed by fibre distribution are illustrated. Finally, a digital pre-distorter is proposed for compensating for the MZM non-linearity. Experimental demonstration of this digital pre-distortion in an UWB over fibre transmission system shows an increased tolerance to the amplitude of the driving OFDM signal as well as an increase in the optimum modulation index of the OFDM signal

    Green radio communication networks applying radio-over-fibre technology for wireless access

    Get PDF
    Wireless communication increasingly is becoming the first choice link to enter into the global information society. It is an essential part of broadband communication networks, due to its capacity to cover the end-user domain, outdoors or indoors. The use of mobile phones and broadband has already exceeded the one of the fixed telephones and has caused tremendous changes in peoples life, as not only to be recognised in the current political overthrows. The all-around presence of wireless communication links combined with functions that support mobility will make a roaming person-bound communication network possible in the near future. This idea of a personal network, in which a user has his own communication environment available everywhere, necessitates immense numbers of radio access points to maintain the wireless links and support mobility. The progress towards “all-around wireless” needs budget and easily maintainable radio access points, with simplified signal processing and consolidation of the radio network functions in a central station. The RF energy consumption in mobile base stations is one of the main problems in the wireless communication system, which has led to the worldwide research in so called green communication, which offers an environmentally friendly and cost-effective solution. In order to extend networks and mobility support, the simplification of antenna stations and broadband communication capacity becomes an increasingly urgent demand, also the extension of the wireless signal transmission distance to consolidate the signal processing in a centralised site. Radio-over-Fibre technology (RoF) was considered and found to be the most promising solution to achieve effective delivery of wireless and baseband signals, also to reduce RF energy consumption. The overall aim of this research project was to simulate the transmission of wireless and baseband RF signals via fibre for a long distance in high quality, consuming a low-power budget. Therefore, this thesis demonstrated a green radio communication network and the advantage of transmitting signals via fibre rather than via air. The contributions of this research work were described in the follows: Firstly, a comparison of the power consumption in WiMAX via air and fibre is presented. As shown in the simulation results, the power budget for the transmission of 64 QAM WiMAX IEEE 802.16-2005 via air for a distance of 5km lies at -189.67 dB, whereas for the transmission via RoF for a distance of 140km, the power consumption ranges at 65dB. Through the deployment of a triple symmetrical compensator technique, consisting of SMF, DCF and FBG, the transmission distance of the 54 Mbps WiMAX signal can be increased to 410km without increasing the power budget of 65dB. An amendment of the triple compensator technique to SMF, DCF and CFBG allows a 120Mbps WiMAX signal transmission with a clear RF spectrum of 3.5 GHz and constellation diagram over a fibre length of 792km using a power budget of 192dB. Secondly, the thesis demonstrates a simulation setup for the deployment of more than one wireless system, namely 64 QAM WiMAX IEEE 802.16-2005 and LTE, for a data bit rate of 1Gbps via Wavelength Division Multiplexing (WDM) RoF over a transmission distance of 1800km. The RoF system includes two triple symmetrical compensator techniques - DCF, SMF, and CFBG - to obtain a large bandwidth, power budget of 393.6dB and a high signal quality for the long transmission distance. Finally, the thesis proposed a high data bit rate and energy efficient simulation architecture, applying a passive optical component for a transmission span up to 600km. A Gigabit Optical Passive Network (GPON) based on RoF downlink 2.5 Gbps and uplink 1.25Gbps is employed to carry LTE and WiMAX, also 18 digital channels by utilising Coarse Wavelength Division Multiplexing (CWDM). The setup achieved high data speed, a low-power budget of 151.2dB, and an increased service length of up to 600km

    Design and analysis of adaptively modulated optical orthogonal frequency division multiple access multiband passive optical networks

    Get PDF
    The aim of this thesis is to explore innovative technical solutions of utilising Optical Orthogonal Frequency Division Multiplexing (OOFDM) in intensity modulation and direct detection (IMDD) based future access networks to provide multi-service capability with a minimum 1 Gb/s per user. This thesis extensively investigates and analyses the feasibility and performance of adaptively modulated optical orthogonal frequency division multiplexing multiple access passive optical networks (AMOOFDMA PONs) upstream transmission systems by numerically simulating AMOOFDMA PONs using experimentally determined parameters. OOFDM transceivers incorporating reflective semiconductor optical amplifiers (RSOAs) and distributed feedback (DFB) lasers are utilised in the transceivers and intensity modulation and direct detection (IMDD) transmission systems are also employed to achieve a low complexity, high speed and large bandwidth PON as a solution for next generation access networks. Numerical simulations has also being undertaken to improve overall AMOOFDMA PON performance and power budget by incorporating optical band-pass filters (OBPFs) at the output of optical network units (ONUs). A major challenge of making PONs spectrally efficient has been addressed in this thesis by investigating the AMOOFDMA PON with ONUs on a single upstream wavelength. The performance of the single upstream wavelength AMOOFDMA PON is compared to the multiple wavelength AMOOFDMA PON. Another major challenge in AMOOFDMA PONs namely improving system capacity has also been addressed by implementing multiband transmission in an AMOOFDMA PON. Results show that for a multiple upstream OOFDMA IMDD PON system over 25 km single mode fibre (SMF) can achieve an aggregated data rate of 11.25 Gb/s and the minimum wavelength spacing between ONUs are independent of the number of ONUs. Results also show that a single upstream wavelength AMOOFDMA IMDD PON with multiband incorporated at the ONUs can achieve a aggregated line rate of 21.25 Gb/s over 25 km SMF

    Optical multicarrier sources for spectrally efficient optical networks

    Get PDF
    During the last 30 years the capacity of commercial optical systems exceeded the network traffic requirements, mainly due to the extraordinary scalability of wavelength division multiplexing technology that has been successfully used to expand capacity in optical systems and meet increasing bandwidth requirements since the early 1990’s. Nevertheless, the rapid growth of network traffic inverted this situation and current trends show faster growing network traffic than system capacity. To enable further and faster growth of optical communication network capacity, several breakthroughs occurred during the last decade. First, optical coherent communications, which were the subject of intensive research in the 1980’s, were revived. This triggered the employment of advanced modulation formats. Afterwards, with the introduction of orthogonal frequency division multiplexing (OFDM) and Nyquist WDM modulation techniques in optical communication systems, very efficient utilisation of the available spectral bandwidth was enabled. In such systems the spectral guard bands between neighbouring channels are minimised, at the expense of stricter requirements on the performance of optical sources, especially the frequency (or wavelength) stability. Attractive solutions to address the frequency stability issues are optical multicarrier sources which simultaneously generate multiple phase correlated optical carriers that ensure that the frequency difference between the carriers is fixed. In this thesis, a number of optical multicarrier sources are presented and analysed, with special focus being on semiconductor mode-locked lasers and gain-switched comb sources. High capacity and spectrally efficient optical systems for short and medium reach applications (from 3 km up to 300 km), based on optical frequency combs as optical sources, advanced modulation formats (m-QAM) and modulation techniques (OFDM and Nyquist WDM) have been proposed and presented. Also, certain optoelectronic devices (i.e. semiconductor optical amplifier) and techniques (feed-forward heterodyne linewidth reduction scheme) have been utilised to enable the desired system performance

    Techniques en appui des formats de modulation avancés pour les futurs réseaux optiques

    Get PDF
    Les systĂšmes de communication optique avec des formats de modulation avancĂ©s sont actuellement l’un des sujets de recherche les plus importants dans le domaine de communication optique. Cette recherche est stimulĂ©e par les exigences pour des dĂ©bits de transmission de donnĂ©e plus Ă©levĂ©s. Dans cette thĂšse, on examinera les techniques efficaces pour la modulation avancĂ©e avec une dĂ©tection cohĂ©rente, et multiplexage par rĂ©partition en frĂ©quence orthogonale (OFDM) et multiples tonalitĂ©s discrĂštes (DMT) pour la dĂ©tection directe et la dĂ©tection cohĂ©rente afin d’amĂ©liorer la performance de rĂ©seaux optiques. Dans la premiĂšre partie, nous examinons la rĂ©tropropagation avec filtre numĂ©rique (DFBP) comme une simple technique d’attĂ©nuation de nonlinĂ©aritĂ© d’amplificateur optique semiconducteur (SOA) dans le systĂšme de dĂ©tection cohĂ©rente. Pour la premiĂšre fois, nous dĂ©montrons expĂ©rimentalement l’efficacitĂ© de DFBP pour compenser les nonlinĂ©aritĂ©s gĂ©nĂ©rĂ©es par SOA dans un systĂšme de dĂ©tection cohĂ©rente porteur unique 16-QAM. Nous comparons la performance de DFBP avec la mĂ©thode de Runge-Kutta quatriĂšme ordre. Nous examinons la sensibilitĂ© de performance de DFBP par rapport Ă  ses paramĂštres. Par la suite, nous proposons une nouvelle mĂ©thode d’estimation de paramĂštre pour DFBP. Finalement, nous dĂ©montrons la transmission de signaux de 16-QAM aux taux de 22 Gbaud sur 80km de fibre optique avec la technique d’estimation de paramĂštre proposĂ©e pour DFBP. Dans la deuxiĂšme partie, nous nous concentrons sur les techniques afin d’amĂ©liorer la performance des systĂšmes OFDM optiques en examinent OFDM optiques cohĂ©rente (CO-OFDM) ainsi que OFDM optiques dĂ©tection directe (DDO-OFDM). PremiĂšrement, nous proposons une combinaison de coupure et prĂ©distorsion pour compenser les distorsions nonlinĂ©aires d’émetteur de CO-OFDM. Nous utilisons une interpolation linĂ©aire par morceaux (PLI) pour charactĂ©riser la nonlinĂ©aritĂ© d’émetteur. Dans l’émetteur nous utilisons l’inverse de l’estimation de PLI pour compenser les nonlinĂ©aritĂ©s induites Ă  l’émetteur de CO-OFDM. DeuxiĂšmement, nous concevons des constellations irrĂ©guliĂšres optimisĂ©es pour les systĂšmes DDO-OFDM courte distance en considĂ©rant deux modĂšles de bruit de canal. Nous dĂ©montrons expĂ©rimentalement 100Gb/s+ OFDM/DMT avec la dĂ©tection directe en utilisant les constellations QAM optimisĂ©es. Dans la troisiĂšme partie, nous proposons une architecture rĂ©seaux optiques passifs (PON) avec DDO-OFDM pour la liaison descendante et CO-OFDM pour la liaison montante. Nous examinons deux scĂ©narios pour l’allocations de frĂ©quence et le format de modulation des signaux. Nous identifions la dĂ©tĂ©rioration limitante principale du PON bidirectionnelle et offrons des solutions pour minimiser ses effets.Optical communication systems with advanced modulation formats are currently one of the major research focuses of the optical communication community. This research is driven by the ever-increasing demand for higher data transmission rates. In this thesis, we investigate efficient techniques for advanced modulation with coherent detection, and optical orthogonal frequency-division multiplexing (OFDM) and discrete multi-tone (DMT) for both direct detection and coherent detection to improve the performance of optical networks. In the first part, we investigate digital filter back-propagation (DFBP) as a simple semiconductor optical amplifier (SOA) nonlinearity mitigation technique in coherent detection systems. For the first time, we experimentally demonstrate effectiveness of DFBP in compensating for SOA-induced nonlinearities in a 16-ary quadrature amplitude modulation (16-QAM) singlecarrier coherent detection system. We compare performance of DFBP with Runge-Kutta fourth-order method. We examine sensitivity of DFBP performance to its parameters. Afterwards, we propose a novel parameter estimation method for DFBP. Finally, we demonstrate successful transmission of 22 Gbaud 16-QAM signals over 80 km fiber with the proposed parameter estimation technique for DFBP. In the second part, we concentrate on techniques to improve performance of optical OFDM systems, examining both coherent optical OFDM (CO-OFDM) and direct-detection optical OFDM (DDO-OFDM). First, we propose a combination of clipping and predistortion technique to compensate for CO-OFDM transmitter nonlinear distortions. We use piecewise linear interpolation (PLI) for characterizing the transmitter nonlinearity. At the transmitter, we use inverse of the PLI estimate to pre-compensate the nonlinearities induced at the COOFDM transmitter. Second, we design optimized non-square constellations for short-reach DDO-OFDM systems based on two channel noise models. We experimentally demonstrate 100 Gb/s+ OFDM/DMT with direct detection using the optimized QAM constellations. In the third part, we propose and experimentally demonstrate a passive optical network (PON) architecture with DDO-OFDM for the downlink and CO-OFDM for the uplink. We examine two scenarios for the occupied frequency and modulation format of the signals. We identify main limiting impairments of the bidirectional PON and provide solutions to minimize their effects

    Optical frequency comb source for next generation access networks

    Get PDF
    The exponential growth of converged telecommunication services and the increasing demands for video rich multimedia applications have triggered the vast development of optical access technology to resolve the capacity bottleneck at metropolitan-access aggregations. To further enhance overall performance, next generation optical access networks will require highly efficient wavelength division multiplexing (WDM) technology beyond the capability of current standard time division multiplexed (TDM) systems. The successful implementation of future-proof WDM access networks depends on advancements in high performance transmission schemes as well as economical and practical electronic/photonic devices. This thesis focuses on an investigation of the use of optical frequency comb sources, and spectrally efficient modulation formats, in high capacity WDM based optical access networks. A novel injected gain switched comb generation technique which deliver simplicity, reliability, and cost effectiveness has been proposed and verified through experimental work. In addition, a detailed characterization of the optical comb source has been undertaken with special attention on the phase noise property of the comb lines. The potential of the injected gain switched comb source is then demonstrated in a digital coherent receiver based long reach WDM access scenario, which intends to facilitate 10 - 40 Gbit/s data delivery per channel . Furthermore, an optical scalar transmission scheme enabling the direct detection of higher order modulation format signals has been proposed and experimentally investigated

    Orthogonal frequency division multiplexing for next generation optical networks

    Get PDF
    Next generation optical networks will be required to provide increased data throughput on a greater number of optical channels and will also have to facilitate network flexibility in order to adapt to dynamic traffic patterns. Furthermore, the potentially wide deployment of optical Access and Metropolitan networks in particular require that these challenges are met in a cost effect manner. This thesis examines the use of Orthogonal Frequency Division Multiplexing (OFDM) as a means of helping to meet these requirements for next generation optical systems with a high market volume. OFDM is a multi–carrier modulation technique which exhibits high spectral efficiency and a tolerance to chromatic dispersion making it an excellent candidate for use in next generation optical networks. The work presented in this thesis shows how the use of OFDM in conjunction with novel laser devices and direct detection can be used to construct cost effective, low footprint optical systems. These systems are capable of providing >10Gb/s per optical channel and are suitable for implementation as optical access networks. Furthermore, OFDM is shown to be a realistic candidate for use in an optical switching environment where external modulation is employed and, as such, can be considered for use in next generation metropolitan networks

    Converged wireline and wireless signal distribution in optical fiber access networks

    Get PDF

    DSP-enabled Reconfigurable Optical Network Devices and Architectures for Cloud Access Networks

    Get PDF
    To meet the ever-increasing bandwidth requirements, the rapid growth in highly dynamic traffic patterns, and the increasing complexity in network operation, whilst providing high power consumption efficiency and cost-effectiveness, the approach of combining traditional optical access networks, metropolitan area networks and 4-th generation (4G)/5-th generation (5G) mobile front-haul/back-haul networks into unified cloud access networks (CANs) is one of the most preferred “future-proof” technical strategies. The aim of this dissertation research is to extensively explore, both numerically and experimentally, the technical feasibility of utilising digital signal processing (DSP) to achieve key fundamental elements of CANs from device level to network architecture level including: i) software reconfigurable optical transceivers, ii) DSP-enabled reconfigurable optical add/drop multiplexers (ROADMs), iii) network operation characteristics-transparent digital filter multiple access (DFMA) techniques, and iv) DFMA-based passive optical network (PON) with DSP-enabled software reconfigurability. As reconfigurable optical transceivers constitute fundamental building blocks of the CAN’s physical layer, digital orthogonal filtering-based novel software reconfigurable transceivers are proposed and experimentally and numerically explored, for the first time. By making use of Hilbert-pair-based 32-tap digital orthogonal filters implemented in field programmable gate arrays (FPGAs), a 2GS/s@8-bit digital-to-analogue converter (DAC)/analogue-to-digital converter (ADC), and an electro-absorption modulated laser (EML) intensity modulator (IM), world-first reconfigurable real-time transceivers are successfully experimentally demonstrated in a 25km IMDD SSMF system. The transceiver dynamically multiplexes two orthogonal frequency division multiplexed (OFDM) channels with a total capacity of 3.44Gb/s. Experimental results also indicate that the transceiver performance is fully transparent to various subcarrier modulation formats of up to 64-QAM, and that the maximum achievable transceiver performance is mainly limited by the cross-talk effect between two spectrally-overlapped orthogonal channels, which can, however, be minimised by adaptive modulation of the OFDM signals. For further transceiver optimisations, the impacts of major transceiver design parameters including digital filter tap number and subcarrier modulation format on the transmission performance are also numerically explored. II Reconfigurable optical add/drop multiplexers (ROADMs) are also vital networking devices for application in CANs as they play a critical role in offering fast and flexible network reconfiguration. A new optical-electrical-optical (O-E-O) conversion-free, software-switched flexible ROADM is extensively explored, which is capable of providing dynamic add/drop operations at wavelength, sub-wavelength and orthogonal sub-band levels in software defined networks incorporating the reconfigurable transceivers. Firstly, the basic add and drop operations of the proposed ROADMs are theoretically explored and the ROADM designs are optimised. To crucially validate the practical feasibility of the ROADMs, ROADMs are experimentally demonstrated, for the first time. Experimental results show that the add and drop operation performances are independent of the sub-band signal spectral location and add/drop power penalties are <2dB. In addition, the ROADMs are also robust against a differential optical power dynamic range of >2dB and a drop RF signal power range of 7.1dB. In addition to exploring key optical networking devices for CANs, the first ever DFMA PON experimental demonstrations are also conducted, by using two real-time, reconfigurable, OOFDM-modulated optical network units (ONUs) operating on spectrally overlapped multi-Gb/s orthogonal channels, and an offline optical line terminal (OLT). For multipoint-to-point upstream signal transmission over 26km SSMF in an IMDD DFMA PON, experiments show that each ONU achieves a similar upstream BER performance, excellent robustness to inter-ONU sample timing offset (STO) and a large ONU launch power variation range. Given the importance of IMDD DFMA-PON channel frequency response roll-off, both theoretical and experimental explorations are undertaken to investigate the impact of channel frequency response roll-off on the upstream transmission of the DFMA PON system Such work provides valuable insights into channel roll-off-induced performance dependencies to facilitate cost-effective practical network/transceiver/component designs
    corecore