26 research outputs found

    Spatio-Temporal processing for Optimum Uplink-Downlink WCDMA Systems

    Get PDF
    The capacity of a cellular system is limited by two different phenomena, namely multipath fading and multiple access interference (MAl). A Two Dimensional (2-D) receiver combats both of these by processing the signal both in the spatial and temporal domain. An ideal 2-D receiver would perform joint space-time processing, but at the price of high computational complexity. In this research we investigate computationally simpler technique termed as a Beamfom1er-Rake. In a Beamformer-Rake, the output of a beamfom1er is fed into a succeeding temporal processor to take advantage of both the beamformer and Rake receiver. Wireless service providers throughout the world are working to introduce the third generation (3G) and beyond (3G) cellular service that will provide higher data rates and better spectral efficiency. Wideband COMA (WCDMA) has been widely accepted as one of the air interfaces for 3G. A Beamformer-Rake receiver can be an effective solution to provide the receivers enhanced capabilities needed to achieve the required performance of a WCDMA system. We consider three different Pilot Symbol Assisted (PSA) beamforming techniques, Direct Matrix Inversion (DMI), Least-Mean Square (LMS) and Recursive Least Square (RLS) adaptive algorithms. Geometrically Based Single Bounce (GBSB) statistical Circular channel model is considered, which is more suitable for array processing, and conductive to RAKE combining. The performances of the Beam former-Rake receiver are evaluated in this channel model as a function of the number of antenna elements and RAKE fingers, in which are evaluated for the uplink WCDMA system. It is shown that, the Beamformer-Rake receiver outperforms the conventional RAKE receiver and the conventional beamformer by a significant margin. Also, we optimize and develop a mathematical formulation for the output Signal to Interference plus Noise Ratio (SINR) of a Beam former-Rake receiver. In this research, also, we develop, simulate and evaluate the SINR and Signal to Noise Ratio (Et!Nol performances of an adaptive beamforming technique in the WCDMA system for downlink. The performance is then compared with an omnidirectional antenna system. Simulation shows that the best perfom1ance can be achieved when all the mobiles with same Angle-of-Arrival (AOA) and different distance from base station are formed in one beam

    Spatio-Temporal processing for Optimum Uplink-Downlink WCDMA Systems

    Get PDF
    The capacity of a cellular system is limited by two different phenomena, namely multipath fading and multiple access interference (MAl). A Two Dimensional (2-D) receiver combats both of these by processing the signal both in the spatial and temporal domain. An ideal 2-D receiver would perform joint space-time processing, but at the price of high computational complexity. In this research we investigate computationally simpler technique termed as a Beamfom1er-Rake. In a Beamformer-Rake, the output of a beamfom1er is fed into a succeeding temporal processor to take advantage of both the beamformer and Rake receiver. Wireless service providers throughout the world are working to introduce the third generation (3G) and beyond (3G) cellular service that will provide higher data rates and better spectral efficiency. Wideband COMA (WCDMA) has been widely accepted as one of the air interfaces for 3G. A Beamformer-Rake receiver can be an effective solution to provide the receivers enhanced capabilities needed to achieve the required performance of a WCDMA system. We consider three different Pilot Symbol Assisted (PSA) beamforming techniques, Direct Matrix Inversion (DMI), Least-Mean Square (LMS) and Recursive Least Square (RLS) adaptive algorithms. Geometrically Based Single Bounce (GBSB) statistical Circular channel model is considered, which is more suitable for array processing, and conductive to RAKE combining. The performances of the Beam former-Rake receiver are evaluated in this channel model as a function of the number of antenna elements and RAKE fingers, in which are evaluated for the uplink WCDMA system. It is shown that, the Beamformer-Rake receiver outperforms the conventional RAKE receiver and the conventional beamformer by a significant margin. Also, we optimize and develop a mathematical formulation for the output Signal to Interference plus Noise Ratio (SINR) of a Beam former-Rake receiver. In this research, also, we develop, simulate and evaluate the SINR and Signal to Noise Ratio (Et!Nol performances of an adaptive beamforming technique in the WCDMA system for downlink. The performance is then compared with an omnidirectional antenna system. Simulation shows that the best perfom1ance can be achieved when all the mobiles with same Angle-of-Arrival (AOA) and different distance from base station are formed in one beam

    Performance of Multi-Antenna Enhanced HSDPA

    Get PDF

    Multi-carrier transmission techniques toward flexible and efficient wireless communication systems

    Get PDF
    制度:新 ; 文部省報告番号:甲2562号 ; 学位の種類:博士(国際情報通信学) ; 授与年月日:2008/3/15 ; 早大学位記番号:新470

    Linear space-time modulation in multiple-antenna channels

    Get PDF
    This thesis develops linear space–time modulation techniques for (multi-antenna) multi-input multi-output (MIMO) and multiple-input single-output (MISO) wireless channels. Transmission methods tailored for such channels have recently emerged in a number of current and upcoming standards, in particular in 3G and "beyond 3G" wireless systems. Here, these transmission concepts are approached primarily from a signal processing perspective. The introduction part of the thesis describes the transmit diversity concepts included in the WCDMA and cdma2000 standards or standard discussions, as well as promising new transmission methods for MIMO and MISO channels, crucial for future high data-rate systems. A number of techniques developed herein have been adopted in the 3G standards, or are currently being proposed for such standards, with the target of improving data rates, signal quality, capacity or system flexibility. The thesis adopts a model involving matrix-valued modulation alphabets, with different dimensions usually defined over space and time. The symbol matrix is formed as a linear combination of symbols, and the space-dimension is realized by using multiple transmit and receive antennas. Many of the transceiver concepts and modulation methods developed herein provide both spatial multiplexing gain and diversity gain. For example, full-diversity full-rate schemes are proposed where the symbol rate equals the number of transmit antennas. The modulation methods are developed for open-loop transmission. Moreover, the thesis proposes related closed-loop transmission methods, where space–time modulation is combined either with automatic retransmission or multiuser scheduling.reviewe

    Convergence of packet communications over the evolved mobile networks; signal processing and protocol performance

    Get PDF
    In this thesis, the convergence of packet communications over the evolved mobile networks is studied. The Long Term Evolution (LTE) process is dominating the Third Generation Partnership Project (3GPP) in order to bring technologies to the markets in the spirit of continuous innovation. The global markets of mobile information services are growing towards the Mobile Information Society. The thesis begins with the principles and theories of the multiple-access transmission schemes, transmitter receiver techniques and signal processing algorithms. Next, packet communications and Internet protocols are referred from the IETF standards with the characteristics of mobile communications in the focus. The mobile network architecture and protocols bind together the evolved packet system of Internet communications to the radio access network technologies. Specifics of the traffic models are shortly visited for their statistical meaning in the radio performance analysis. Radio resource management algorithms and protocols, also procedures, are covered addressing their relevance for the system performance. Throughout these Chapters, the commonalities and differentiators of the WCDMA, WCDMA/HSPA and LTE are covered. The main outcome of the thesis is the performance analysis of the LTE technology beginning from the early discoveries to the analysis of various system features and finally converging to an extensive system analysis campaign. The system performance is analysed with the characteristics of voice over the Internet and best effort traffic of the Internet. These traffic classes represent the majority of the mobile traffic in the converged packet networks, and yet they are simple enough for a fair and generic analysis of technologies. The thesis consists of publications and inventions created by the author that proposed several improvements to the 3G technologies towards the LTE. In the system analysis, the LTE showed by the factor of at least 2.5 to 3 times higher system measures compared to the WCDMA/HSPA reference. The WCDMA/HSPA networks are currently available with over 400 million subscribers and showing increasing growth, in the meanwhile the first LTE roll-outs are scheduled to begin in 2010. Sophisticated 3G LTE mobile devices are expected to appear fluently for all consumer segments in the following years

    Pré-filtragem no espaço-frequência para o sistema MC-CDMA

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaO trabalho desta tese enquadra-se na área de comunicações móveis, mais especificamente em sistemas de portadora múltipla. O MC-CDMA, que combina a modulação OFDM com o espalhamento na frequência, é um dos candidatos mais promissores para a interface-ar dos futuros sistemas de comunicações móveis – 4G. O objectivo desta tese é propor e avaliar técnicas de pré-filtragem e de codificação, projectadas no espaço-frequência/tempo para o sistema MC-CDMA, no sentido descendente (Downlink). Inicialmente, são discutidos conceitos teóricos fundamentais para se compreender o mecanismo físico de propagação inerente às comunicações móveis, apresentando-se depois vários sistemas de portadora múltipla. É dada especial atenção ao sistema convencional MC-CDMA. Este sistema é importante porque serve de referência ao desempenho obtido com as técnicas de transmissão propostas nesta tese. Estas técnicas são projectadas tendo em conta as restrições em termos de complexidade do terminal móvel. Assim, a estação base é equipada com um agregado de antenas e o terminal móvel com uma antena, sendo neste último, apenas implementadas técnicas de detecção mono-utilizador. Assumindo, que a estação base conhece a resposta do canal antes da transmissão, são propostas diferentes estratégias de transmissão: os filtros são projectados no espaço-frequência para o sistema MC-CDMA combinados com ou sem equalização no terminal móvel; e o filtro é projectado apenas na frequência para o sistema MC-CDMA com codificação no espaço-frequência/tempo. O algoritmo é baseado na minimização da potência transmitida sujeita à total eliminação da interferência de acesso múltiplo e das distorções provocadas pelo canal rádio móvel. Todos os esquemas propostos são validados e comparados, através de simulações, em cenários típicos de interiores e exteriores. Como principal conclusão desta tese, destaca-se a significativa melhoria de desempenho obtido com estas técnicas, relativamente ao sistema convencional MC-CDMA. Além disso, este desempenho é conseguido com um terminal móvel de reduzida complexidade. Assim, estas técnicas permitem aumentar significativamente a capacidade do sistema e, simultaneamente, transferir grande parte da complexidade do terminal móvel para a estação base.The scope of this thesis targets multi-carrier modulation techniques for mobile radio communications system. MC-CDMA combining multi-carrier modulation and spreading in the frequency domain is widely viewed as a promising candidate for 4G air interfaces. The aim of this thesis is to propose and evaluate pre-filtering and coding techniques designed in space and frequency/time for the downlink MC-CDMA system. Initially, the fundamental propagation mechanisms inherent to mobile radio communications are discussed and then several multi-carrier schemes are presented. Furthermore, special attention is given to the conventional MCCDMA system, since it can be used as the reference benchmark performance for the advanced transmission techniques proposed in this thesis. These transmission schemes are designed taking into account the complexity constraints at the mobile terminal. Hence, the basestation is equipped with an antenna array and the mobile terminal comprises a single antenna and single user detection scheme. Based on the assumption that the basestation has prior channel knowledge, different transmission strategies are proposed: spacefrequency pre-filtering schemes combined with single user equalizers at the MT for the MC-CDMA system; frequency pre-filtering scheme for spacefrequency/ time coding MC-CDMA system. The algorithm is based on the minimization of the transmitted power subject to MAI and channel distortion elimination. The proposed pre-filtering schemes are assessed and compared through simulations in typical indoor and pedestrian scenarios. This work concluded that with the proposed pre-filtering schemes, we obtain a considerable performance improvement in typical indoor and outdoor scenarios with a low complexity mobile terminal design and allow a transfer of implementation complexity from the mobile to the basestation
    corecore