18,149 research outputs found

    Integrating model checking with HiP-HOPS in model-based safety analysis

    Get PDF
    The ability to perform an effective and robust safety analysis on the design of modern safety–critical systems is crucial. Model-based safety analysis (MBSA) has been introduced in recent years to support the assessment of complex system design by focusing on the system model as the central artefact, and by automating the synthesis and analysis of failure-extended models. Model checking and failure logic synthesis and analysis (FLSA) are two prominent MBSA paradigms. Extensive research has placed emphasis on the development of these techniques, but discussion on their integration remains limited. In this paper, we propose a technique in which model checking and Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS) – an advanced FLSA technique – can be applied synergistically with benefit for the MBSA process. The application of the technique is illustrated through an example of a brake-by-wire system

    Model-based dependability analysis : state-of-the-art, challenges and future outlook

    Get PDF
    Abstract: Over the past two decades, the study of model-based dependability analysis has gathered significant research interest. Different approaches have been developed to automate and address various limitations of classical dependability techniques to contend with the increasing complexity and challenges of modern safety-critical system. Two leading paradigms have emerged, one which constructs predictive system failure models from component failure models compositionally using the topology of the system. The other utilizes design models - typically state automata - to explore system behaviour through fault injection. This paper reviews a number of prominent techniques under these two paradigms, and provides an insight into their working mechanism, applicability, strengths and challenges, as well as recent developments within these fields. We also discuss the emerging trends on integrated approaches and advanced analysis capabilities. Lastly, we outline the future outlook for model-based dependability analysis

    The natural history of bugs: using formal methods to analyse software related failures in space missions

    Get PDF
    Space missions force engineers to make complex trade-offs between many different constraints including cost, mass, power, functionality and reliability. These constraints create a continual need to innovate. Many advances rely upon software, for instance to control and monitor the next generation ‘electron cyclotron resonance’ ion-drives for deep space missions.Programmers face numerous challenges. It is extremely difficult to conduct valid ground-based tests for the code used in space missions. Abstract models and simulations of satellites can be misleading. These issues are compounded by the use of ‘band-aid’ software to fix design mistakes and compromises in other aspects of space systems engineering. Programmers must often re-code missions in flight. This introduces considerable risks. It should, therefore, not be a surprise that so many space missions fail to achieve their objectives. The costs of failure are considerable. Small launch vehicles, such as the U.S. Pegasus system, cost around 18million.Payloadsrangefrom18 million. Payloads range from 4 million up to 1billionforsecurityrelatedsatellites.Thesecostsdonotincludeconsequentbusinesslosses.In2005,Intelsatwroteoff1 billion for security related satellites. These costs do not include consequent business losses. In 2005, Intelsat wrote off 73 million from the failure of a single uninsured satellite. It is clearly important that we learn as much as possible from those failures that do occur. The following pages examine the roles that formal methods might play in the analysis of software failures in space missions

    Executable formal specifications of complex distributed systems with CoreASM

    Get PDF
    Formal specifications play a crucial role in the design of reliable complex software systems. Executable formal specifications allow the designer to attain early validation and verification of design using static analysis techniques and accurate simulation of the runtime behavior of the system-to-be. With increasing complexity of software-intensive computer-based systems and the challenges of validation and verification of abstract software models prior to coding, the need for interactive software tools supporting executable formal specifications is even more evident. In this paper, we discuss how CoreASM, an environment for writing and running executable specifications according to the ASM method, provides flexibility and manages the complexity by using an innovative extensible language architecture

    Magic-State Functional Units: Mapping and Scheduling Multi-Level Distillation Circuits for Fault-Tolerant Quantum Architectures

    Full text link
    Quantum computers have recently made great strides and are on a long-term path towards useful fault-tolerant computation. A dominant overhead in fault-tolerant quantum computation is the production of high-fidelity encoded qubits, called magic states, which enable reliable error-corrected computation. We present the first detailed designs of hardware functional units that implement space-time optimized magic-state factories for surface code error-corrected machines. Interactions among distant qubits require surface code braids (physical pathways on chip) which must be routed. Magic-state factories are circuits comprised of a complex set of braids that is more difficult to route than quantum circuits considered in previous work [1]. This paper explores the impact of scheduling techniques, such as gate reordering and qubit renaming, and we propose two novel mapping techniques: braid repulsion and dipole moment braid rotation. We combine these techniques with graph partitioning and community detection algorithms, and further introduce a stitching algorithm for mapping subgraphs onto a physical machine. Our results show a factor of 5.64 reduction in space-time volume compared to the best-known previous designs for magic-state factories.Comment: 13 pages, 10 figure

    SPH-EXA: Enhancing the Scalability of SPH codes Via an Exascale-Ready SPH Mini-App

    Full text link
    Numerical simulations of fluids in astrophysics and computational fluid dynamics (CFD) are among the most computationally-demanding calculations, in terms of sustained floating-point operations per second, or FLOP/s. It is expected that these numerical simulations will significantly benefit from the future Exascale computing infrastructures, that will perform 10^18 FLOP/s. The performance of the SPH codes is, in general, adversely impacted by several factors, such as multiple time-stepping, long-range interactions, and/or boundary conditions. In this work an extensive study of three SPH implementations SPHYNX, ChaNGa, and XXX is performed, to gain insights and to expose any limitations and characteristics of the codes. These codes are the starting point of an interdisciplinary co-design project, SPH-EXA, for the development of an Exascale-ready SPH mini-app. We implemented a rotating square patch as a joint test simulation for the three SPH codes and analyzed their performance on a modern HPC system, Piz Daint. The performance profiling and scalability analysis conducted on the three parent codes allowed to expose their performance issues, such as load imbalance, both in MPI and OpenMP. Two-level load balancing has been successfully applied to SPHYNX to overcome its load imbalance. The performance analysis shapes and drives the design of the SPH-EXA mini-app towards the use of efficient parallelization methods, fault-tolerance mechanisms, and load balancing approaches.Comment: arXiv admin note: substantial text overlap with arXiv:1809.0801
    • …
    corecore