
Executable Formal Specifications of Complex

Distributed Systems with CoreASM

Roozbeh Farahboda, Vincenzo Gervasib, Uwe Glässerc

aDefence R&D Canada—Valcartier, QC, Canada
bDipartimento di Informatica, University of Pisa, Italy

cSchool of Computing Science, Simon Fraser University, BC, Canada

Abstract

Formal specifications play a crucial role in the design of reliable, complex
software systems. Executable formal specifications allow the designer to at-
tain early validation and verification of design using static analysis techniques
and accurate simulation of the runtime behavior of the system-to-be. With
increasing complexity of software-intensive computer-based systems and the
challenges of validation and verification of abstract software models prior to
coding, the need for interactive software tools supporting executable formal
specifications is even more evident. In this paper we discuss how CoreASM,
an environment for writing and running executable specifications according
to the ASM method, provides flexibility and manages complexity by using
an innovative extensible language architecture.

Keywords:
Formal methods; Specification and modeling environment; Extensible
language; Abstract state machines; CoreASM.

1. Introduction

Computer-based systems are increasingly integrated into our day-to-day
life. They either control or provide platforms for our communication net-
works, transportation facilities, economic markets, health-care systems, and
safety and security facilities. With the increasing complexity of these sys-
tems, efficient design and development of high quality computational systems
that faithfully conform to their requirements are extremely challenging and
the costs of design flaws and system failures are high. Proper understanding
of the requirements, precisely documenting design decisions, and effectively

Preprint submitted to Science of Computer Programming February 7, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della Ricerca - Università di Pisa

https://core.ac.uk/display/80213168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

communicating such decisions with the domain experts as early as possible
play important roles in the design of complex systems. These challenges call
for adoption of proper engineering methods and tools and have motivated
the use of formal methods in software engineering.

Abstraction and formalization provide effective instruments for estab-
lishing critical system requirements by precisely modeling systems prior to
construction so that one can analyze and reason about specifications and
design choices and better understand their implications [1]. There are many
approaches to formal modeling of software and hardware systems. The Ab-
stract State Machine (ASM) framework [2] has been used for computational
and mathematical modeling of complex distributed systems with an orien-
tation toward practical applications. The ASM framework offers a universal
model of computation and serves as an effective instrument for analyzing and
reasoning about complex semantic properties of discrete dynamic systems.
For almost two decades now, abstract state machines have been studied,
practiced, and applied in modeling and specification of systems to bridge the
gap between formal and pragmatic approaches.

In addition to abstraction and formalization, computer-based assistance
plays an increasingly important role in making design and development of
complex systems feasible. Abstract executable specifications serve as a basis
for design exploration and experimental validation through simulation and
testing. Model checking tools based on formal verification techniques help
with proving critical properties of systems and assuring “correctness” before
deployment.

There is a variety of tools and executable languages available for ASMs,
each coming with their own strengths and limitations. In [3], we propose a
set of characteristic features (not further discussed here) that any tool en-
vironment for modeling and analysis of complex distributed systems should
ideally support, and link these features to methodical aspects in the design
of CoreASM (www.coreasm.org), a language and associate toolset for writ-
ing and executing ASM specifications. The description in [3] does however
not address in any detail the fundamental technical concepts that form the
foundation of the specification, design and implementation of CoreASM. In
contrast, we explain here the key technical aspects of the tool architecture
in detail and report on our experiences with design, implementation and use
of CoreASM, building on its original formal semantic specification [4], which
was developed prior to any coding as a blueprint for construction. CoreASM
builds on sound theoretical foundations and existing development infrastruc-

2

http://www.coreasm.org

ture, providing an innovative architecture for an extensible language. The
system has been used both in research and in industrial contexts, support-
ing rapid experimentation as well as in-depth validation of complex software
products.

The rest of this paper is organized as follows. Section 2 briefly describes
the formal background of the ASM method; Section 3 presents the speci-
fication of the CoreASM language and the design of the CoreASM toolset,
which is the main subject of this paper. This is followed in Section 4 by a
description of the implementation of the toolset, with a special focus on its
extensibility features and environment support. Section 5 reports on note-
worthy experiences where the toolset has been applied to (and extended to
address) practical problems. A short survey of related work and some con-
clusions complete the paper.

2. Abstract State Machines

This section briefly outlines the basic concepts of the ASM method for
high-level design and analysis of distributed systems. For further details, we
refer to [2, 5, 6]. ASMs offer a versatile mathematical method for modeling
of discrete dynamic systems with the goal to bridge the gap between compu-
tation models and specification methods. ASM models essentially are rigor-
ously defined pseudocode programs operating on abstract data structures [2].
Building on common notions from discrete mathematics and computational
logic, static and dynamic aspects of systems are modeled at any desired level
of abstraction by combining two concepts of abstract states and transition
systems. ASMs have been used in modeling of architectures, languages, pro-
tocols and virtually all kinds of sequential, parallel and distributed systems
with a notable orientation toward practical applications [2, 7, 8, 9, 10, 11].

2.1. ASM systems engineering method

The ASM method aims at industrial system design and development by
integrating precise high-level, problem-domain oriented modeling into the
design and development cycle, and by systematically linking abstract models
down to executable code.

The method consists of three essential elements: a) capturing the require-
ments into a precise yet abstract operational model, called a ground model
ASM, b) systematic and incremental refinement of the ground model down to

3

the implementation, and c) experimental model validation through simula-
tion or testing at each level of abstraction. This process emphasizes freedom
of abstraction as a guiding principle, meaning that original ideas behind the
design of a system can be expressed in a direct and intuitive way so as to en-
able system designers to stress on the essential aspects of design rather than
encoding insignificant details. To this end, it is vital that the method allows
for, and actually encourages, the use of notational conventions, for instance,
as in the typical phrase “In the following, we use the notation ¡notation¿ to
mean ¡semantics¿”. It is also understood that authors can use the full extent
of mathematics and computer science notations if that is instrumental to
express themselves clearly. Any executable implementation must thus allow
for similar extensibility, which constitutes a significant design challenge in
itself.

Starting from a ground model and applying the process of step-wise re-
finement [12], a hierarchy of intermediate models can be created that are
systematically linked down to the implementation. At each step, the refined
model can be validated and verified to be a correct implementation of the
abstract model. The resulting hierarchy serves as a design documentation
and allows one to trace requirements down to the implementation.

2.2. Distributed ASMs

The original notion of basic ASM was defined to formalize simultaneous
parallel actions of a single computational agent. A basic ASM M is defined
as a tuple of the form (Σ, I, R, PM) where Σ is a finite set of function
names and symbols, I is a set of initial states for Σ, R is a set of transition
rule declarations, and PM ∈ R is a distinguished rule, called the main rule
or the Program of machine M .

A state A for Σ is a non-empty set X together with an interpretation
fA : Xn 7→ X for each function name f in Σ. Functions can be static
or dynamic. Interpretations of dynamic functions can change from state to
state. Pairs of a function name f and an optional argument (v1, . . . , vn) are
called locations. The evaluation of a transition rule in a given state produces
a finite set of updates of the form 〈(f, 〈a1, . . . , an〉), v〉 where f is an n-ary
function name in Σ and a1, . . . , an, v ∈ X. An update (f, args, v) prescribes
a change to the content of location f(args) taking effect in the next state.

A distributed ASM (DASM) MD is defined by a dynamic set Agent of
autonomously operating computational agents, each executing a basic ASM.
This set may change dynamically over runs of MD, as required to model

4

a varying number of computational resources. Agents of MD interact with
one another, and typically also with the operational environment of MD, by
reading and writing shared locations of a global machine state. The under-
lying semantic model resolves potential conflicts according to the definition
of partially ordered runs [9, 5].

MD interacts with its operational environment—the part of the external
world visible to MD—through actions/events observable at external inter-
faces, formally represented by controlled and monitored functions. Of par-
ticular interest are monitored functions, read-only functions controlled by
the environment. A typical example is the abstract representation of global
system time in terms of a monitored function now taking values in a linearly
ordered domain Time. Values of now increase monotonically over runs of
MD.

3. Specification and Design of CoreASM

More than a full year of work went into the formal specification and design
of the CoreASM architecture, its language and the simulation engine prior to
any coding. The resulting formal model [4], defined in terms of an abstract
state machine, served as a precise blueprint for requirement analysis and for
reasoning about design decisions. The formal approach greatly simplified the
analytical validation of the design of the core components and their interop-
erability. Starting from the foundation laid in [4], the original specification
of CoreASM, the formal model turned out to be stable and robust so that it
evolved only marginally during the actual development and implementation
phase. In fact, all of the essential design concepts established in the original
model turned out to be sensible choices and are virtually identical in the
most recent version documented in [13]. This section illustrates in detail the
formal requirements and design specification of the CoreASM language and
tool architecture. For a complete description of the formal CoreASM model
we refer to [13].

Since the CoreASM language definition and underlying semantics are vir-
tually identical to the ASM language, CoreASM directly inherits some of the
prominent features of the ASM modeling framework. As explained in Sec-
tion 2, ASM models are rigorously defined pseudocode programs operating
on abstract data structures, a concept that supports writing of concise and
intelligible specifications with a precise semantic foundation. Nonetheless,

5

abstract machine operations and data structures can be fairly high-level1 and
yet in principle be executable. The ASM framework comes with a sound and
powerful notion of stepwise refinement [12] that helps coping with complexity
by structuring the design of a system into suitable levels of abstraction and
linking them down to a concrete model. The design of both distributed and
parallel systems is supported by providing asynchronous and synchronous
computation models. Explicit and implicit non-determinism offer flexible
ways of avoiding insignificant details and modeling interaction with the ex-
ternal world.

The latest version of the CoreASM toolset offers a) an extensible specifica-
tion language, b) an extensible multi-agent ASM simulation engine, faithful
to the mathematical definition of ASMs, that animates CoreASM specifica-
tions in addition to providing other services, such as parsing, through a rich
API, c) a library of optional plugins offering additional features and language
constructs not originally part of the ASM dialect, and d) an Eclipse front-end
with dynamic syntax high-lighting and a command-line user interface.

3.1. From ASM to CoreASM

This section illustrates a simple CoreASM model and in part also its ASM
equivalent using the railroad crossing example of [13] which is based on the
specification of a railroad crossing gate controller published in [14].

A system controls a gate at a railroad crossing with multiple tracks on
which trains can travel in both directions. Sensors on the tracks can detect
if a train is coming or if it is currently crossing. The gate is controlled by
two signals open and close. The purpose of the system is to keep the gate
closed if a train is crossing (safety) and to keep it open otherwise (liveness).

The Rail Road Crossing ASM consists of two basic abstract machines,
TrackControl and GateControl, respectively controlling the tracks—sending sig-
nals to the gate controller—and maintaining the state of the gate—opening
or closing the gate in response to gate signals. The environment sets the
value of the function trackStatus based on the track sensors data.

function trackStatus : Track -> {empty, coming, crossing}
function gateState : -> {opened, closed}

There is an implicit deadline associated with every track t, indicating the
maximum available time, with regard to track t, to safely close the gate.

1 Arbitrary structures can be used to reflect the underlying notion of state [2, p. 22].

6

function deadline : Track -> TIME

The track control program TrackControl is a parallel combination of two
ASM rules: 1) closing the gate if needed (for all tracks, calculate new dead-
lines, send a close signal if needed, and clear passed deadlines); 2) opening
the gate if it is safe to do so. The program is defined as shown in Figure 1.

Figure 1: CoreASM version of TrackControl with SetDeadline(x) and its ASM equivalent

SignalOpen, for example, is defined as follows.
rule SignalOpen =

if gateSignal = close and safeToOpen then

gateSignal := open

The predicate safeToOpen, used in the SignalOpen rule, is defined as follows.

safeToOpen ≡ ∀t ∈ Track trackStatus = empty ∨ deadline(t) > now + dopen

where dopen refers to the time it takes to actually open the gate. This defini-
tion translates into CoreASM as shown below, in which the keyword “derived”
denotes the definition of a function whose value is dynamically calculated at
runtime.

derived safeToOpen = forall t in Track holds

trackStatus(t) = empty or deadline(t) > (now + dopen)

Finally, the gate control program simply responds to gate signals by changing
the state of the gate:

rule GateControl = {
if gateSignal = open and gateState = closed then gateState := opened

if gateSignal = close and gateState = opened then gateState := closed

}

7

3.2. CoreASM Formal Specification

We firmly belief that the design and development of a reliable framework
for mathematical system modeling ought to start with a formal specification
of its language and tool architecture.2 Building on a formal model serves
practical needs in the design and development process, as will be explained.

The CoreASM language—its abstract syntax and underlying semantics—
is specified in terms of an interpreter in the form of an abstract state machine,
thereby ensuring executability of the language together with providing its
formal semantics. Syntactical patterns and their corresponding semantics
are defined using the following notation.

L pattern M → actions

Such an expresion can be directly mapped to a rule of the form

if conditions then actions

where the conditions are derived from the pattern. For instance, the CoreASM
assignment rule is defined as follows.

L α
e
? := β

e
? M → choose τ ∈ {α, β} with ¬evaluated(τ)

pos := τ
ifnone
if loc(α) 6= undef then

if isModifiable(stateFunction(state,namelc(loc))) then
[[pos]] := (undef, {|〈loc(α), value(β)〉|}, undef)

else
Error(‘Cannot update a non-modifiable function’)

else
Error(‘Cannot update a non-location.’)

The notation we use here has been introduced in [4]. It will suffice to say
that the semantics is given by ASM rules guarded by syntactical patterns;
a variable pos indicates the subtree which is being evaluated, and is used
to navigate the syntax tree. Inside a pattern, a generic parse tree node is
denoted with

e
? , regardless of being evaluated or not (while an empty box

indicates an unevaluated node). Prefix superscripts name locations. In the
ASM rules, each symbol is bound to the corresponding value in the pattern.

2How can one convincingly argue for genuine benefits of using a formal framework for
analysis and specification of systems otherwise?

8

Evaluation of ASM rules results in assigning a triple (location,updates,value)
to the evaluated node; this operation is denoted as [[pos]] := (l, u, v). The idea
here is that for each individual program, the CoreASM parser generates an
annotated parse tree as input for the interpreter. Each node of a parse
tree potentially has a reference to the plugin that defines the corresponding
syntax. By traversing a parse tree, the interpreter generates a multiset of
update instructions, each of which represents either an update, or an arbitrary
instruction to be processed at a later stage by means of plug-ins that generate
the actual updates. In the above expression pos refers to the node in the parse
tree that is being evaluated, and α and β respectively refer to the lhs and
rhs nodes in the parse tree. Control proceeds from node to node either by
explicitly assigning values to pos, or by evaluating pos, i.e. setting a triplet
of (locaction, updates, value) to [[pos]].

The above rule does not syntactically constrain assignment to be per-
formed exclusively to variables or functions, rather any expression that can
be evaluated to a modifiable location is syntactically acceptable in the lhs of
an assignment; likewise, any expression that can be evaluated to a value is
acceptable in the rhs of an assignment.

The design of the CoreASM simulation engine and its architecture is speci-
fied using Extensible Control State ASMs (eCASMs). Figure 2 illustrated an
example [13]. Upon receiving a load command the engine loads a new spec-
ification in the following consecutive steps. It first clears previously loaded
data, then reads the specification file and parses the specification header to
get the list of specific plugins required to be loaded. Loading the required
plugins is done in two steps. First, all the package plugins (plugins that are
basically a set of other plugins) are expanded and their enclosed plugins are
added to the list of required plugins. In the next step, plugins are loaded
one by one according to their loading priority. After all the required plugins
are loaded, the specification is parsed using the grammar rules provided by
the plugins. To prepare the engine for the first simulation step, Abstract
Storage is initialized taking into account all plugins contributions, such as
backgrounds, universes, functions, and macro rules. The concept of back-
ground [15] refers to an implicitly given part of an abstract machine state,
assuming that it provides whatever standard means are normally supposed
to be available in a given application context.3 Further, a universe of Agents

3A realistic description of algorithms involves quite a rich background, including num-

9

Idle

Loading
Plugins

LoadSpecPlugins

CONTROL API

Parsing Header ParseHeader

PARSER

Parsing Spec ParseSpecification

Initializing
State

InitAbstractStorage

ABSTRACT STORAGE SCHEDULER

Preparing
Initial State

PrepareInitialState

newCommand ∈
{load, parse, parseHeader}

newCommand =
parseHeader

ClearLoadedData

yes

newCcommand = parse
yes

no

no

Figure 2: Control State ASM of loading a specification in CoreASM

and a function program that assigns programs to agents are also created in
this step. Finally, an initial state is created with at least one agent that, in
the first step of the simulation, will run the main program.

Control State ASMs (CASMs) [2] are a practical class of abstract state
machines with an easy-to-understand graphical representation. Based on
CASMs, we define eCASMs [17] as a class of control state ASMs the behavior
of which can be arbitrarily extended using plugins. In the following section
we look into the extensibility concept of CoreASM.

3.3. An Open and Extensible Framework

Abstract state machines are used in diverse application domains, some
of which require the introduction of special rule forms and data structures.
Hence, CoreASM is implemented to be flexibly extensible by third parties to
meet application specific requirements. Furthermore, supporting freedom of
experimentation, we would like to allow various modeling tools and environ-
ments to closely interact with the engine and also allow researchers to use
variations of the engine. The design of a plugin-based architecture, based on a
minimal kernel for the CoreASM language and modeling environment, offers
the extensibility of both the language and its simulation engine. A micro-
kernel that forms the core of the language and the engine contains the bare

bers, sets, multisets, maps, sequences, and the like, since all these things are generally
taken to be available when designing algorithms [16].

10

essentials, that is, all that is needed to run only the most basic ASM. Most
of the constructs of the language and operation of the engine come in the
form of plugins extending the kernel. This extensibility concept is explored
in detail in [17, 13].

3.3.1. Extensible Language

Language extensibility is not a new concept [18]. For instance, there are
a number of programming languages that support some form of extensibility,
ranging from introducing new macros to the definition of new syntactical
structures. CoreASM, however, offers the possibility of extending and modi-
fying both the syntax and semantics of the language, keeping only the bare
essential parts invariable. Plugins thus require extending the grammar of the
core language by providing new grammar rules together with their seman-
tics. As a result, every time a CoreASM specification is being loaded, based
on the set of plugins that the specification uses, the engine builds a language
and a parser for that language to parse the specification. Since the set of
all the possible plugins and their grammar rules is not known at design time
(due to the plugin-based architecture), one of the challenges was to equip
the engine with a fast parser generator capable of generating parsers with
look-ahead of more than one to allow the co-existence of multiple grammar
rules all starting with the same pattern.

3.3.2. Extensible Engine

Serving distinct practical needs, there are two different mechanisms for
extending the CoreASM engine. Plugins can extend and/or modify the func-
tionality of specific engine components (like the parser or the agent scheduler)
either by introducing additional data or behavior to those components or they
can extend the control state ASM of the engine by interposing their own code
in between state transitions of the engine. The latter mechanism enables a
wide range of extensions of the engine’s execution cycle for the purpose of
implementing various practically relevant features, such as adding debug-
ging support, adding a C-like preprocessor, or performing statistical analysis
of the run-time behavior of the simulated machine, e.g., through coverage
analysis, profiling and the like.

The eCASM of the engine associates an extension point with each state
transition. Plugins can extend the engine’s control state ASM by registering
for these extension points. At any extension point, if there is any plugin
registered for that point, the code contributed by the plugin for that transi-

11

i rulecond j

(a)

i rulecond j

PRule2PRule1

(b)

Figure 3: (a) An Extensible Control State ASM and (b) its extended form

tion is executed before the engine proceeds to the next control state. As an
example, the eCASM of Figure 3(a) can be executed with a set of extension
point plugins {p1, p2} contributing rules PRule1 and PRule2 that (potentially)
extend the execution of the machine to the control state ASM of Figure 3(b).

A plugin, for example, may monitor the updates that are generated by a
step—possibly checking conditions on these updates—before they are applied
to the current state of the simulated machine, thus implementing a kind of
watch-point to suspend execution of the engine when certain updates are
generated, which is useful for debugging purposes.

Finally, the set of plugins used in a specification is determined by the
specification itself, so that different users of CoreASM can adapt the language
syntax and (within reason) semantics to their own specific needs, while at the
same time relying on a solid formal background that guarantees a consistent
behaviour without constraining notational convenience.

3.3.3. Open Framework

CoreASM is an open framework meant to be used with complementary
tools, e.g., for symbolic model checking and automated test generation. To do
this, the CoreASM engine comes with a sophisticated and well defined control
API serving for various operations such as loading CoreASM specifications,
starting an ASM run, or performing single execution steps of the simulated
machines. Aiming at a platform-independent implementation of CoreASM
that supports future improvement and modifications as needed by its growing
user community, the whole framework is implemented in Java under the
Academic Free License version 3.0 (AFL 3.0). AFL 3.0 is an open source
license with no reciprocal obligation to disclose source code; it provides a good
compromise between public availability of the original source code and the
existence of proprietary editions and extensions for commercial applications.

12

4. Implementing CoreASM

Following the formal specification and design of the CoreASM architec-
ture, implementing the first prototype (including the CoreASM kernel and
its basic plugins) was rather straight-forward and took only about six man
months in total by two graduate students. One of the main challenges was
to properly adapt a parser generator that is fast enough to generate parsers
from fragments of grammar rules provided by different plugins every time a
CoreASM specification is loaded.

The CoreASM source code, with about 59K lines of code, is available on
Sourceforge (coreasm.sf.net). Since its first beta release in September 2006,
CoreASM went through a number of revisions. Its latest version (currently
under testing) offers substantial improvements over its previous versions in
terms of features and performance (see wiki.coreasm.org for details).

4.1. The Architecture

Closely following the design of the engine, the Java implementation of
CoreASM implements the kernel of the engine in terms of four components
and a Control API. The interface of the components are defined by four Java
interface files: Parser, Interpreter, AbstractStorage, and Scheduler.
For every component, a default implementation is provided in the form of
a Java class file. Since Control API acts as a double interface, providing
services both to the environment of the engine and to its internal components
(the former being a subset of the latter), two Java interface files together
define the interface of the engine: (i) a CoreASMEngine interface defines
the interface of the engine to its outside environment offering services such
as loading, parsing, or execution of specifications; (ii) a ControlAPI which
extends the CoreASMEngine interface providing access to every component,
a mapping of plugin names to actual plugin instances, and error reporting
services. An implementation of the CoreASM engine is provided by the Java
class file Engine which implements the ControlAPI interface.

The CoreASMEngine interface provides a comprehensive interface to the
engine. Through this interface, applications can a) load and execute Core-
ASM specifications and access the (simulated) state of the machine at run-
time, b) use the engine to parse CoreASM specifications into parse-trees
(which can be externally processed for various purposes such as model check-
ing [19] or pretty printing), and c) modify various engine properties as well
as monitoring the behavior of the engine at runtime.

13

http://coreasm.sf.net
http://wiki.coreasm.org

String

Number

Set

List

String

Number

Set

List

CoreASM
to

Promela

CoreASM
Kernel

StringMaster
mind

JASMine

Observer

Plotter

Standard Plugins
Custom Plugins

[mc]square

Custom Applications

CSDe

Eclipse Carma

User Interfaces

Figure 4: CoreASM Kernel, Plugins, and Applications

There are currently two user interfaces available for CoreASM (see Fig-
ure 4): a comprehensive command-line user interface, called Carma, and
a graphical interactive development environment in the Eclipse platform,
known as the CoreASM Eclipse Plugin. There is also a sophisticated tool un-
der development for creating and modifying Control State ASMs and trans-
lating them into CoreASM specifications, called CSDe.

The CoreASM kernel also defines the skeleton of a CoreASM plugin in form
of a Java abstract class Plugin. Various types of extensions that plugins can
provide to the engine (see [17] for a complete list) are defined in terms of
Java interface files. Every CoreASM plugin must extend the Plugin abstract
class and typically implement one or more of the extension interfaces.

4.2. The CoreASM Engine

CoreASM engine is represented by the CoreASMEngine interface and is im-
plemented by the Engine class file which serves two purposes: (i) it provides
an implementation for the interface of the engine to its outside environment,
and (ii) it acts as a container for the main components of the engine and
maintains the control state of the CoreASM engine. In order for the engine
to be always responsive to its environment, the Engine object runs in two
parallel processing threads: one, being the environment or the caller’s thread,

14

Figure 5: Components of the CoreASM Engine

responds to requests from the environment (such as sending commands, set-
ting engine properties, or retrieving updates) and the other one maintains
the internal control flow of the engine.

4.2.1. Abstract Storage

The Abstract Storage, one of four components forming the CoreASM ker-
nel, maintains a representation of the current state of the simulated machine
in CoreASM, and provides interfaces to retrieve and update values assigned to
the locations of the simulated state. This component is implemented by more
than three dozen classes in the package org.coreasm.engine.absstorage.
A hierarchy of classes implement various types of elements defined in the ker-
nel (see Figure 6). At the root of this hierarchy, we have the Element class
which is the superclass of all the values in CoreASM states, implementing the
Element domain. Following the CoreASM specification, every instance of
Element has a background and a notion of equality. Three immediate sub-
classes BooleanElement, RuleElement, and FunctionElement respectively
implement the domains of Booleans, transition rules, and state functions.

4.2.2. The Parser

Implementing the parser component of the CoreASM engine was quite
a challenge. We were looking for fast and efficient parser generators that
can be called upon loading a specification to generate a parser based on the

15

Figure 6: Core Elements Defined in the Abstract Storage

16

grammar provided by the specific plugins that are used in that specification.
We looked into a number of available open source parser generators in search
of an efficient LL(k) parser generator written in Java and we eventually
found jparsec (jparsec.codehaus.org), a recursive-descent parser combinator
framework written for Java. In contrast to traditional parser generators like
YACC or ANTLR, jparsec grammar is written in native Java language and
is defined in terms of special Java instances of a Parser class. Each parser
object represents a grammar rule and can be combined with other parser
objects to create more complex production rules.

This feature of jparsec appeared to be very beneficial for CoreASM. Upon
loading a specification, the kernel provides references to the core parser ob-
jects (such as white spaces, identifiers, terms, etc.)4 and makes them available
for plugins to build upon. Plugins in turn provide their contributions to the
parser in form of new jparsec parser objects. The kernel then combines all
these parser contributions together to create the final parser that will be used
to parse the specification.

4.2.3. CoreASM Plugins

Every CoreASM plugin must extend the abstract class Plugin and most
likely implements at least one of the nine plugin interfaces offered by the
engine [17]. A CoreASM plugin is usually accompanied by a number of auxil-
iary Java classes. As a result, every CoreASM plugin is expected to be packed
into a single JAR file or a folder of its own together with an identification
file. When an instance of Engine is initialized, it searches the specified plu-
gin folders, creates a catalog of available plugins so that they can be later
instantiated if needed. As a result, to add a new plugin to CoreASM, one
only needs to put the compiled class files of the plugin together with an
identification file into a plugin folder of the engine.

4.3. User Interfaces and Tools

The CoreASM engine is implemented as a Java component and requires
a driver program (such as a user interface) to run the engine, e.g., to pass
specification files to the engine and to control its simulation run by manip-
ulating parameters. Here we briefly present the currently available drivers
and user interfaces for CoreASM.

4Some of these core parsers, such as the one for parsing CoreASM terms, can also be
extended by plugins.

17

http://jparsec.codehaus.org

4.3.1. Carma

Carma is a comprehensive command-line user interface for CoreASM that
offers rich control over the runs of the engine through a number of command-
line options and switches. To execute a specification, users can simply run
Carma on the command line and pass it the name of the specification file5 as
an argument. By default, an ASM run managed by Carma runs indefinitely
(which is according to the theoretical definition of a run), but the tool offers
a number of termination conditions, such as termination after a number of
steps, termination on empty updates, and termination when there is no valid
agent with a defined program, which can be selected by the user. As an exam-
ple, the following command runs the CoreASM specification MySpec.coreasm

using Carma and stops after 30 steps or after a step that generates empty
updates; it also provides a print-out of the final state before termination.

carma --steps 30 --empty-updates --dump-final-state MySpec.coreasm

4.3.2. The CoreASM Eclipse Plugin

The CoreASM Eclipse Plugin is a graphical interactive development envi-
ronment for CoreASM in form of a plugin for the well-known Eclipse software
development platform. The IDE provides various options to control execu-
tion of CoreASM specifications. The plugin extends the Eclipse platform to
support dynamic syntax highlighting (using Eclipse’s native framework) and
interactive execution of CoreASM specifications. Since the language of Core-
ASM for a given specification is defined by the set of plugins used by that
specification, with every change to the specification, the editor component of
the CoreASM Eclipse Plugin passes the specification to the CoreASM engine
and gets the set of plugins that are used by the specification. The editor
then asks the plugins for the set of keywords, functions, universes and back-
grounds they provide and uses this information to offer a dynamic syntax
highlighting of the specification.

Figure 7(a) shows a snapshot of the CoreASM environment in Eclipse. At
the top left corner ©1 , the toolbar is extended to include buttons to pause,
resume and stop a simulation run. The editor ©2 provides dynamic syntax
highlighting for CoreASM specifications based on the set of CoreASM plugins
used in the specification. A configurable output console ©3 provides a print-

5The specification can be a text file, as is traditionally the case, or an OpenOffice
document with commentary intertwined with specification text, in the spirit of literate
programming.

18

out of the results of the simulation with optional additional information on
the simulation process and the state of the simulated machine.

4.3.3. CSDe

The Control State Diagram editor (CSDe), under development by Piper
J. Jackson [20], is a sophisticated tool for creating and modifying Control
State ASMs and translating them into CoreASM specifications. The tool is
implemented as a plugin for the Eclipse software development platform. The
plugin allows the user to work with Control State Diagrams (CSDs) using a
point-and-click schema (see Figure 7(b)).

The simplicity of control state diagrams and the intuitiveness of the
graphical user interface work together to allow users to confidently contribute
to the design, regardless of their technical background. The diagram editor
(CSDe) is capable of automatically transforming diagrams into CoreASM
specifications. Since control state diagrams do not necessarily include initial
states of the system or other more concrete information required for machine
execution, such specifications may not be directly executable. However, they
provide an abstract structure for the design of systems and act as founda-
tions for further development of the specifications. The automatic transla-
tion feature facilitates the transition from high-level design ideas expressed
in graphical form towards less abstract specifications.

CSDe, in its current form, is primarily a proof of concept. As an Eclipse
plugin, it relies on older versions of Eclipse and the Eclipse Graphical Mod-
elling Framework (GMF) and does not work with the latest versions of the
framework.

4.4. Using CoreASM: An Example

In this section, we briefly go through the process of installing CoreASM
and running one of the sample specifications that are available on the Core-
ASM website.

4.4.1. Installing CoreASM

As mentioned earlier, there are two font-ends for CoreASM: the command-
line Carma interface and the graphical CoreASM Eclipse plugin. Both pack-
ages include the latest version of the CoreASM engine. Carma can be down-
loaded as a ZIP package from the CoreASM website and will be executable
on any system running Linux, Windows, or Mac OS X with Java Runtime

19

11

33
22

(a) CoreASM Eclipse Plugin

(b) CSDe: A Control State Diagram editor for CoreASM

Figure 7: CoreASM Tools in Eclipse

20

Environment version 1.6 or higher installed. The latest version of the Core-
ASM Eclipse plugin can be installed from within the Eclipse environment
by pointing to the CoreASM Eclipse update site. Instructions in detail are
available on www.coreasm.org/download.

4.4.2. Running the Railroad Crossing Example

Running the CoreASM model of the Railroad Crossing Example of Sec-
tion 3.1 allows us to validate the behavior of the gate controller6. For the
sake of brevity, here we focus on using Carma to run this specification.

The execution provides a printout of the states of the system. The output
shows that the controller keeps the gate open while there is no train on the
tracks and keeps it closed as long as there is at least one train crossing the
intersection. Since there is no termination condition and the gate controller
can run indefinitely, we can limit the run by providing the maximum number
of computation steps the simulation should run for. This is done by passing
the number of steps to Carma using the -s (or --steps) argument:

$ carma -s 100 RailroadCrossing.coreasm

4.4.3. Using the Observer Plugin

It is sometimes desirable to have a machine-readable log of the execution
of a specification for offline analysis and visualization. Such a feature allows
for a clear separation of the execution and the analysis. To offer this feature,
the Observer plugin can be used to monitor the execution of specifications
in CoreASM and produce an XML log of the updates that are produced
after every computation step. The plugin can be configured so that only
the updates on certain locations of interest are recorded. For example, the
following line in our specification configures the Observer plugin to monitor
only the updates that affect the states of the gate and tracks:

option Observer.LocationsOfInterest "trackStatus gateState"

For this particular example, we have developed a visualizer that loads
an XML log of a simulation (automatically produced by the Observer plu-
gin) and provides a visual account of the simulation. Figure 8 presents a
screenshot of this visualizer.

6 See http://coreasm.org/publications/scp-rce.pdf for the full specification.

21

http://www.coreasm.org/download
http://coreasm.org/publications/scp-rce.pdf

Figure 8: Visualizing a Run of the Railroad Crossing Specification

5. CoreASM Applications

CoreASM has been put to the test in a range of applications in the pri-
vate and public sectors, spanning computational criminology,7 coastal surveil-
lance, decision support, Web services, and high-level synthesis in hardware
design. The diversity of application fields has been invaluable to examine
the practicability of using CoreASM for requirements analysis, design specifi-
cation and rapid prototyping of abstract executable models. In this section,
we briefly discuss some of these projects. Table 1 provides examples of the
specification sizes and CoreASM features used in three of these projects.

Dynamic Resource Configuration & Management Architecture (DRCMA)
is a highly adaptive and auto-configurable, multi-layer network architecture
for distributed information fusion [21]. The ASM model of the underlying
design provides a reliable basis for reasoning about key system attributes
at an intuitive level of understanding, supporting requirements specification,
design analysis and validation of dynamic properties. Building an abstract
yet executable DRCMA model in CoreASM enabled advanced experiments to
validate consequential design decisions at a fairly high levels of abstraction.

Our work on integrating ASM modeling with Interpreted Systems for sit-
uation analysis decision support system design [22], exemplifies the benefits
of using ASM and CoreASM in combination with the Interpreted Systems

7Computational criminology is a rapidly growing field that explores the use of computer
science methods and tools in different stages of studying complex crime phenomena.

22

approach of [23] in modeling multiagent systems for situation analysis. Re-
finement of the abstract model into an executable CoreASM model serves
two purposes: a) it helps finding ambiguities, missing pieces and loose ends
of the model and forces the system analyst/modeler to think clearly about
the main concepts and their definitions, and b) it supports experimental val-
idation through execution (simulation). The outcome of this work initiated
another project with Defence R&D Canada proposing a formal modeling
framework for high-level design and analysis of Situation Analysis Decision
Support Systems (SADSS) in which CoreASM serves as means to enable val-
idation of abstract models with distributed and mobile components [24, 25].
This framework captures common concepts and notions of situation analysis
and situation awareness, allows for reasoning about knowledge, uncertainty
and belief change, and enables rapid prototyping of abstract executable deci-
sion support system models. Experimental study of SA scenarios as presented
here can considerably enhance our insight into intricate system dynamics and
simplify the challenging task of deriving meaningful conformance criteria for
checking the validity of Situation Analysis Decision Suppor domain models
against established operational concepts of Marine Safety & Security.

The Mastermind project [26] is a pioneering interdisciplinary project in
computational criminology that focuses on modeling and simulation in the
study of spatiotemporal patterns of offender behavior in urban environments.
At the heart of Mastermind is a robust ASM ground model, developed over
many iterations, for checking the validity of the model with respect to es-
tablished crime theories. The process of establishing the key properties and
ensuring the validity of the model was greatly facilitated by running exper-
iments on abstract models using CoreASM. In this project, CoreASM has
played an important role in facing the challenges of two major phases of the
Mastermind project, namely formalization and validation [26].

Altenhofen and Börger [27] analyze a given cluster protocol implemen-
tation using an abstract ASM model, which they refine into an executable
CoreASM model for running scenarios. Lemcke and Friesen at SAP Ger-
many [28] propose a Web services composition algorithm for collaborative
business processes defined in terms of a distributed ASM, using CoreASM for
executing their ASM model to show that the generated orchestration steers
the execution of the business processes as intended. Beckers et. al [29] use
the simulation capabilities of CoreASM in their approach to model checking
ASMs without the need for translation of the ASM specification into the
modeling language of an existing model checker.

23

Project(Spec.(Lines(Modules(DASM(JASMine(Custom(Plugin(GUI(
DRCMA& ~1,100& 6& ✓& ✓& ✓

SADSS& ~1,200& 5& ✓& & ✓ ✓&
Mastermind& ~1,600& 1& ✓& & ✓ ✓&
&
&
& Table 1: Examples of Specification Sizes and CoreASM Features Used

CoreASM’s extensibility has played a crucial role in writing specifications
efficiently. For example, in [30] CoreASM was used to build an executable
model of the behavior of a liver cell, and of how it would react to changing
environmental conditions. To inspect the health of the cell, we used a plu-
gin to graphically plot an arbitrary number-valued function on the screen.
Similarly, in [31] we produced a formal specification of the behavior of a
web browser, for the purpose of validating properties of several web appli-
cations framework on the HTML 5 specification. Such a large specification
would have been impossible to write without the ability of directly expressing
domain-specific concepts such as parsing an HTML file into a Document Ob-
ject Model, or parsing a Javascript source program into an abstract syntax
tree (for the purpose of interpreting it).

In fact, we developed plugins to incorporate trees and grammars into the
fabric of the language – a grammar, for example, is mapped to the ASM state
in such a way that every non-terminal is a location in the state (i.e., a variable
whose value is the corresponding production), and as such it can even be
dynamically updated during the computation. By implementing extensions
to the parser (defining additional grammar rules), the interpreter (defining
additional semantics) and the vocabulary (defining additional constants and
literals), the grammar plugin seamlessly incorporates into the language the
ability to define grammar rules by assignment:

Op := "+" | "-"

Term := ID | Number | @Term . Op . @Term | "(" . @Term . ")"

where the operators | (alternative), . (sequence), and @ (lazy evaluation
for recursion), and the predefined constants ID and Number are provided by
the plugin. The actual parsing of a string is then performed by a rule (also
provided by the plugin) such as

parse "1+(test-2)" by Term into T

which results in the term T containing the parse tree for the given string.

24

6. Related Work

Over the years, a variety of executable ASM languages has been devel-
oped. The first generation of such tools goes back to basic interpreters and
compilers written in C [32], Prolog [33] and Scheme [34]. Besides, theoretical
frameworks emerged, such as a universal ASM for executing ASM models
[35]. With more experience, a second generation of ASM tool environments
was developed: Microsoft’s AsmL [36] (which was integrated in the .NET
initiative) and Xasm [37] use compilers, whereas the ASM Workbench [38],
AsmGofer [39], and Asmeta [40] are interpreters.

The above languages build on predefined type concepts rather than the
untyped language underlying the theoretical ASM model. The most promi-
nent ASM tools are Asmeta, AsmL and Xasm. The Asmeta language imple-
ments all the constructs of basic, structured and multi-agent ASMs defined
in [2] as a fully typed language with limited extensibility features. AsmL is
a strongly typed language that also includes many object-oriented features
and constructs for rapid prototyping of component-oriented software, thus
departing from the theoretical ASM model; rather it comes with the richness
of a fully fledged programming language. Most of these languages do not
provide run-time system support for distributed ASM models (only Asmeta
and AsmGofer provide some sort of support); only Xasm (and Asmeta in
a limited form) allows systematic language extensions; however, the Xasm
language itself diverts from the original definition of ASMs and seems closer
to a programming language.

State-based formal methods that view the states of a system in terms of
mathematical structures are common for practical system design and analy-
sis. In addition to ASM, one can point to methods such as Alloy [41], B [42],
CASL [43], the Vienna Development Method (VDM) [44], and the Z nota-
tion [45] as the most popular approaches that share many similar concepts
and rely on tool support for analysis of specifications. In fact, the ingredients
of the ASM method are not original. For example, The concept of abstract
states are known from the theory of abstract data types and algebraic spec-
ifications, VDM, and Z, and the ASM refinement concept generalizes the
method which has been introduced by Wirth [46] and Dijkstra [47] and has
been adapted to numerous formal specification methods including Z and B.
What is unique about ASM is the simplicity of the method and the freedom
it offers the practitioner to choose an appropriate level of abstraction and
a combination of concepts, notations and techniques that can be integrated

25

by the framework as elements of a uniform mathematical background [48].
Other well known design and computation models are naturally embedded
into ASMs where they can be recognized by specializing the signature, the
rules, the constraints, and the runs. This has been shown in [49] for VDM,
B, and Petri nets.

Compared to other state-based methods, ASM is still young especially
when it comes to tool support. VDM originated in 1970’s and is one of the
longest established formal methods for modeling of computer-based systems.
The commercial software, VDM Tools (www.vdmtools.jp), offers a rich set of
features for design and analysis of VDM specifications, such as type check-
ing, interpretation, debugging, and code generation. Its community-based
toolset, Overture (www.overturetool.org), is an IDE built on Eclipse that
offers syntax and type checking, animation, debugging, proof obligation gen-
eration, and test coverage generation. For the Z notation, supporting tools
mostly focus on theorem proving (see [50] for a complete list): ProofPower
(www.lemma-one.com), a suite of tools supporting specification and proof in
the Z notation, Z/Eves [51], a front-end for the Eves theorem prover, and
HOL-Z [50] a proof environment for Z specifications based on the generic
theorem prover Isabelle/HOL. A free and open source animator for Z specifi-
cations, called Jaza [50], is also available for evaluation, testing and (for some
specifications) also execution of Z specifications. In addition, the Commu-
nity Z Tools (CZT) project (czt.sourceforge.net) is building a large set of
tools supporting the development and analysis of Z specifications, including
parsing, typechecking, and animation. Inspired by Z, Alloy is a light-weight
specification language aiming at fully automatic analysis of software spec-
ifications. It comes with AlloyAnalyzer, a model-checker that checks cer-
tain properties of specifications by exploring the states of the system and
searching for execution instances that satisfy the properties (simulation) or
counterexamples that violate them (checking). The B method [42], the most
similar approach to ASMs, is essentially an abstract machine notation with
a well-defined notion of refinement that facilitates transformation of abstract
models into implementations. It comes with a rich set of both commercial
and open source tools (see www.bmethod.com for a complete list). Atelier-B
and the B-Toolkit provide syntax analysis, theorem proving, and automatic
refinement of B specifications. Model checkers for B, such as ProB, offer fully
automatic animation of B specifications and support systematic checking of
specifications for errors. The Event-B language, an evolution of classical B,
offers a simpler notation. The most prominent tool for Event-B, the open

26

http://www.vdmtools.jp
http://www.overturetool.org
http://www.lemma-one.com
http://czt.sourceforge.net
http://www.bmethod.com

source Rodin platform, builds on the Eclipse platform. Rodin supports re-
finement and mathematical proofs and it is more mature than CoreASM in
certain aspects.

In comparison, CoreASM is still in early stages of maturity—with its
community of users and developers being much smaller than of the tools listed
above—and offers limited or no support in areas of debugging, typechecking,
test generation, and verification. However, the highly extensible architecture
of CoreASM offers an extremely flexible platform that facilitates addition of
a diverse array of new features and language extensions in the future. The
CoreASM language and simulation engine fully support the original ASM
constructs with a formally defined semantics that is faithful to the original
ASM semantics. In fact, unlike other formal method tools, CoreASM is built
upon a formal specification of both its modeling language and simulation
engine rigorously defined in ASM terms.

The extensibility features of CoreASM have parallels in the field of Domain
Specific Languages (DSL). These are languages whose syntax and semantics
are designed to address a specific problem or domain, and are usually less
suited to generic programming or specification. Some of these languages
can be hosted in a generic language, thus providing additional capabilities to
the latter, or can embed other languages, thus extending their own capabili-
ties [52]. CoreASM differs from both these approaches in two ways. First, in
CoreASM the additional syntax and semantics defined via plugins is merged
in the language seamlessly (in fact, the language itself is almost entirely de-
fined in this way); there is no switching between different modes, languages,
or execution contexts as is mostly the case for embedding of DSLs. Sec-
ond, CoreASM allows extensions of its own computation model via extension
points (Section 3.3.2), so plugins can alter basic mechanisms such as loading
or preprocessing of specifications, whereas embedded DSLs are usually lim-
ited to providing sub-languages for specific fragments of the computation.

Programming languages are sometimes compared to ASM dialects. For
instance, a detailed feature-by-feature comparison of Scala vs. AsmL high-
lights the pros and cons of both languages [53]. This seems appropriate and
meaningful as both are strongly-typed languages. In contrast, CoreASM is
a modeling language focusing on high-level system specification and design
way above the level of strictly typed programming languages and serving
very different purposes. Hence, a comparison of CoreASM to such languages
is out of the scope of this paper.

27

7. Conclusions and Future Work

In this paper we have presented the CoreASM toolset, an environment
for writing and executing ASM specifications. The core component (the
CoreASM interpreter itself) is complemented by a number of different user
interfaces (including embedding the tool in Eclipse, running via command
line, or even incorporating it in OpenOffice to realize “executable papers”),
language extensions (including many experimental constructs that have been
proposed in the literature), and export modules (including towards model
checking, formal verification, and even typesetting systems).

CoreASM itself is a rather large system with non-trivial extensibility fea-
tures. Its architecture allows third parties to seamlessly extend the syntax
and semantics of the language with domain-specific constructs, thus support-
ing in executable code the same freedom of expression and of experimentation
that has been so successfully exploited in most of the theoretical works on
ASMs. In addition, it also allows extensions to the inner working of the inter-
preter, facilitating the implementation of many practically-relevant features
such as monitoring, logging and debugging.

The system has been used in a number of projects, both in scientific and
industrial contexts, with good results. The extensibility features of CoreASM
were utilized in almost all of these projects, enabling development of new fea-
tures and integration of the environment with various external tools. Many
such extensions were developed to enable the specification writer to focus on
the problem at hand, rather than on how to encode the problem in some
rigid formal schema. Examples include addition of new data structures and
language constructs, linking CoreASM to external visualizers, development of
scenario scripting features, and integration of CoreASM specifications with
Java programs and libraries.

We have learned a few lessons as well: most importantly, that in build-
ing a complex tool a solid theoretical foundation (not disjoint from a sound
software engineering sense) is of paramount importance. CoreASM is a well-
specified and hence solidly-implemented embodiment of a very rigorous math-
ematical concept, that of evolving algebra. Starting from a formal specifi-
cation of the tool environment considerably simplified the design and devel-
opment process. Such a formal specification also provides a most valuable
documentation for future maintenance. While out of the labs the solid foun-
dation might be invisible, and implementation and user interface details may
be deemed more important, yet CoreASM would have not survived the test

28

of time as a formal specification interpreter for a wide array of applications,
if it had not been formally specified itself, and systematically implemented
according to that specification.

There are a number of open issues that will be the focus of future work
with CoreASM. The extensible architecture of CoreASM offers utmost flexibil-
ity in extending the language and the engine, however, the current version of
CoreASM does not provide any support for conflict detection and resolution
between plugins. As mentioned earlier in [17], we consider utilizing the con-
cept of Feature-Oriented Software Development (FOSD) [54], such that every
plug-in would provide a list of features. We believe that this would facilitate
the integration of complementing features and the detection of inconsistent
or overlapping plugins. Currently, there is no support in CoreASM for auto-
matic code generation from ASM specifications, nor for automatic test case
generation for conformance testing, comparable to what Spec Explorer [55]
offers. The language could be extended to support generic types and more
sophisticated mathematical structures, although in such cases a fine balance
has to be kept between usability and expressiveness—as is often the case
in language design. These extensions together with the development of de-
bugging tools, more powerful editing facilities (e.g., to support navigation in
particularly intricate models) and state space visualizers would greatly assist
the modeling and design process when dealing with complex control flows.

Acknowledgements. We are grateful to the three anonymous reviewers
for their constructive and valuable feedback helping us to improve the final
version of this paper. We also thank the editors for the excellent collaboration
and their support.

References

[1] D. M. Berry, Formal Methods: the very idea—Some thoughts about why
they work when they work, Science of Computer Programming 42 (1) (2002)
11–27.

[2] E. Börger, R. Stärk, Abstract State Machines: A Method for High-Level
System Design and Analysis, Springer-Verlag, 2003.

[3] R. Farahbod, U. Glässer, The CoreASM modeling framework, Software: Prac-
tice and Experience 41 (2) (2011) 167–178.

29

[4] R. Farahbod, V. Gervasi, U. Glässer, CoreASM: An Extensible ASM Execu-
tion Engine, Fundamenta Informaticae (2007) 71–103.

[5] Y. Gurevich, Evolving Algebras 1993: Lipari Guide, in: E. Börger (Ed.),
Specification and Validation Methods, Oxford University Press, 1995, pp. 9–
36.

[6] R. Farahbod, U. Glässer, Semantic Blueprints of Discrete Dynamic Systems:
Challenges and Needs in Computational Modeling of Complex Behavior., in:
New Trends in Parallel and Distributed Computing, Proc. 6th Intl. Heinz
Nixdorf Symposium, Jan. 2006, Heinz Nixdorf Institute, 2006, pp. 81–95.

[7] U. Glässer, R. Gotzhein, A. Prinz, The Formal Semantics of SDL-2000: Status
and Perspectives, Computer Networks 42 (3) (2003) 343–358.

[8] E. Börger, U. Glässer, W. Müller, Formal Definition of an Abstract VHDL’93
Simulator by EA-Machines, in: C. Delgado Kloos, P. T. Breuer (Eds.), Formal
Semantics for VHDL, Kluwer Academic Publishers, 1995, pp. 107–139.

[9] U. Glässer, Y. Gurevich, M. Veanes, Abstract Communication Model for Dis-
tributed Systems, IEEE Trans. on Soft. Eng. 30 (7) (2004) 458–472.

[10] R. Stärk, J. Schmid, E. Börger, Java and the Java Virtual Machine: Defini-
tion, Verification, Validation, Springer-Verlag, 2001.

[11] R. Farahbod, U. Glässer, M. Vajihollahi, An Abstract Machine Architecture
for Web Service Based Business Process Management, International Journal
of Business Process Integration and Management 1 (2007) 279–291.

[12] E. Börger, Construction and Analysis of Ground Models and their Refine-
ments as a Foundation for Validating Computer Based Systems, Formal As-
pects of Computing 19 (2) (2007) 225–241.

[13] R. Farahbod, CoreASM: An extensible modeling framework & tool environ-
ment for high-level design and analysis of distributed systems, Ph.D. thesis,
Simon Fraser University, Burnaby, Canada (May 2009).

[14] Y. Gurevich, J. Huggins, The Railroad Crossing Problem: An Experiment
with Instantaneous Actions and Immediate Reactions, in: Proceedings of
CSL’95 (Computer Science Logic), Vol. 1092 of LNCS, Springer, 1996, pp.
266–290.

30

[15] A. Blass, Y. Gurevich, Background, Reserve, and Gandy Machines, in:
P. Clote, H. Schwichtenberg (Eds.), Computer Science Logic (Proceedings
of CSL 2000), Vol. 1862 of LNCS, Springer, 2000, pp. 1–17.

[16] A. Blass, Y. Gurevich, Abstract State Machines Capture Parallel Algorithms,
ACM Transactions on Computation Logic 4 (4) (2003) 578–651.

[17] R. Farahbod, V. Gervasi, U. Glässer, G. Ma, CoreASM plug-in architecture,
in: J.-R. Abrial, U. Glässer (Eds.), Rigorous Methods for Software Construc-
tion and Analysis, Springer LNCS Festschrift volume 5115, Springer, 2009,
pp. 147–169.

[18] T. A. Standish, Extensibility in programming language design, SIGPLAN
Not. 10 (7) (1975) 18–21.

[19] G. Z. Ma, Model Checking Support for CoreASM: Model Checking Dis-
tributed Abstract State Machines Using Spin, Master’s thesis, Simon Fraser
University, Canada (May 2007).

[20] R. Farahbod, U. Glässer, P. Jackson, M. Vajihollahi, High Level Analysis,
Design and Validation of Distributed Mobile Systems with CoreASM, in:
Proceedings of 3rd International Symposium On Leveraging Applications of
Formal Methods, Verification and Validation (ISoLA 2008), Springer, 2008.

[21] R. Farahbod, U. Glässer, A. Khalili, A Multi-Layer Network Architecture
for Dynamic Resource Configuration & Management of Multiple Mobile Re-
sources in Maritime Surveillance, in: Proc. of SPIE Defense & Security Sym-
posium, Orlando, Florida, USA, 2009.

[22] R. Farahbod, U. Glässer, E. Bossé, A. Guitouni, Integrating Abstract State
Machines and Interpreted Systems for Situation Analysis Decision Support
Design, in: Proc. of the 11th Intl Conf. on Information Fusion (Fusion 2008),
2008.

[23] P. Maupin, A.-L. Jousselme, Interpreted Systems for Situation Analysis, in:
Proc. of the 10th Intl. Conf. on Information Fusion, Quebec city, Canada,
2007.

[24] R. Farahbod, V. Avram, U. Glässer, A. Guitouni, Engineering situation anal-
ysis decision support systems (2011).

[25] R. Farahbod, V. Avram, U. Glässer, A. Guitouni, A formal approach to high-
level design of situation analysis decision support systems (2011).

31

[26] P. L. Brantingham, U. Glässer, P. Jackson, M. Vajihollahi, Modeling Criminal
Activity in Urban Landscapes, in: N. Memon, J. D. Farley, D. L. Hicks,
T. Rosenoørn (Eds.), Mathematical Methods in Counterterrorism, Springer,
2009, pp. 9–31.

[27] M. Altenhofen, E. Börger, Concurrent abstract state machines and +CAL
programs, Recent Trends in Algebraic Development Techniques: 19th In-
ternational Workshop, WADT 2008, Pisa, Italy, June 13-16, 2008, Revised
Selected Papers (2009) 1–17.

[28] J. Lemcke, A. Friesen, Composing web-service-like abstract state machines
(ASMs), Services, IEEE Congress on (2007) 262–269.

[29] J. Beckers, D. Klünder, S. Kowalewski, B. Schlich, Direct support for model
checking abstract state machines by utilizing simulation, in: ABZ ’08: Pro-
ceedings of the 1st international conference on Abstract State Machines, B
and Z, London, UK, 2008, pp. 112–124.

[30] V. Gervasi, D. Mazzei, Using abstract state machines in modeling biological
systems, in: R. Burattini, R. Contro, P. Dario, L. Landini (Eds.), Atti del
Congresso Nazionale di Bioingegneria 2008, Patron editore, Pisa, Italy, 2008,
pp. 79–80.

[31] V. Gervasi, An ASM model of concurrency in a web browser, submitted to
the Third International ABZ Conference, Pisa, Italy, 2012.

[32] Y. Gurevich, J. Huggins, Evolving Algebras and Partial Evaluation, in:
B. Pehrson, I. Simon (Eds.), IFIP 13th World Computer Congress, Vol. I:
Technology/Foundations, Elsevier, Amsterdam, the Netherlands, 1994, pp.
587–592.

[33] B. Beckert, J. Posegga, leanEA: A Lean Evolving Algebra Compiler, in: H. K.
Büning (Ed.), Proceedings of the Annual Conference of the European Asso-
ciation for Computer Science Logic (CSL’95), Vol. 1092 of LNCS, Springer,
1996, pp. 64–85.

[34] D. Diesen, Specifying Algorithms Using Evolving Algebra. Implementation
of Functional Programming Languages, Dr. scient. degree thesis, Dept. of
Informatics, University of Oslo, Norway (March 1995).

[35] G. Del Castillo, I. Durdanović, U. Glässer, An Evolving Algebra Abstract
Machine, in: H. K. Büning (Ed.), Proceedings of the Annual Conference of

32

the European Association for Computer Science Logic (CSL’95), Vol. 1092 of
LNCS, Springer, 1996, pp. 191–214.

[36] Microsoft FSE Group, The Abstract State Machine Language, available
electronically at http://research.microsoft.com/en-us/projects/asml

(2009).

[37] M. Anlauff, P. Kutter, eXtensible Abstract State Machines, xASM open
source project: http://www.xasm.org.

[38] G. Del Castillo, Towards Comprehensive Tool Support for Abstract State Ma-
chines, in: D. Hutter, W. Stephan, P. Traverso, M. Ullmann (Eds.), Applied
Formal Methods — FM-Trends 98, Vol. 1641 of LNCS, Springer-Verlag, 1999,
pp. 311–325.

[39] J. Schmid, AsmGofer, available electronically at http://www.tydo.de/

doktorarbeit/asmgofer.html (2008).

[40] Formal Methods laboratory of University of Milan, Asmeta, available elec-
tronically at http://asmeta.sourceforge.net (2006).

[41] D. Jackson, Software Abstractions: Logic, Language, and Analysis, MIT
Press, 2006.

[42] J. Abrial, The B-Book: Assigning Programs to Meanings, Cambridge Univer-
sity Press, 1996.

[43] M. Bidoit, P. Mosses, Casl User Manual: Introduction to Using the Common
Algebraic Specification Language Casl, SpringerVerlag, 2004.

[44] D. Bjørner, C. B. Jones (Eds.), The Vienna Development Method: The Meta-
Language, Vol. 61 of Lecture Notes in Computer Science, Springer, 1978.

[45] J. M. Spivey, The Z Notation: a reference manual, 2nd Edition, Prentice Hall
International Series in Computer Science, 1992.

[46] N. Wirth, Program development by stepwise refinement, Communications of
the ACM 14 (4) (1971) 221–227.

[47] E. W. Dijkstra, Notes on structured programming, in: Structured Program-
ming, Academic Press, London, 1972, Ch. 1, pp. 1–82.

[48] E. Börger, The ASM method: An exposition, in: P. Boca, et al. (Eds.), Formal
Methods: State of the Art and New Directions, Springer, 2010.

33

http://research.microsoft.com/en-us/projects/asml
http://www.xasm.org
http://www.tydo.de/doktorarbeit/asmgofer.html
http://www.tydo.de/doktorarbeit/asmgofer.html
http://asmeta.sourceforge.net

[49] E. Börger, High Level System Design and Analysis using Abstract State Ma-
chines, in: D. Hutter and W. Stephan and P. Traverso and M. Ullmann
(Ed.), Current Trends in Applied Formal Methods (FM-Trends 98), no. 1641
in LNCS, Springer-Verlag, 1999, pp. 1–43.

[50] Z notation tool support, http://formalmethods.wikia.com/wiki/Z_

notation [June 2010].

[51] O. Canada, Z/eves version 1.5: An overview, in: FM-Trends, 1998, pp. 367–
376.

[52] P. Hudak, Building domain-specific embedded languages, ACM Computing
Surveys 28.

[53] S. Micheloud, Scala and asml side by side, www.scala-lang.org/docu/

files/ScalaAsmL.pdf (2003).

[54] D. Batory, J. Sarvela, A. Rauschmayer, Scaling stepwise refinement, 2003.
URL citeseer.ist.psu.edu/batory03scaling.html

[55] M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, N. Tillmann, L. Nach-
manson, Model-Based Testing of Object-Oriented Reactive Systems with Spec
Explorer, in: R. M. Hierons, J. P. Bowen, M. Harman (Eds.), Formal Meth-
ods and Testing, Vol. 4949 of Lecture Notes in Computer Science, Springer,
2008, pp. 39–76.

34

http://formalmethods.wikia.com/wiki/Z_notation
http://formalmethods.wikia.com/wiki/Z_notation
www.scala-lang.org/docu/files/ScalaAsmL.pdf
www.scala-lang.org/docu/files/ScalaAsmL.pdf
citeseer.ist.psu.edu/batory03scaling.html
citeseer.ist.psu.edu/batory03scaling.html

	1 Introduction
	2 Abstract State Machines
	2.1 ASM systems engineering method
	2.2 Distributed ASMs

	3 Specification and Design of CoreASM
	3.1 From ASM to CoreASM
	3.2 CoreASM Formal Specification
	3.3 An Open and Extensible Framework
	3.3.1 Extensible Language
	3.3.2 Extensible Engine
	3.3.3 Open Framework

	4 Implementing CoreASM
	4.1 The Architecture
	4.2 The CoreASM Engine
	4.2.1 Abstract Storage
	4.2.2 The Parser
	4.2.3 CoreASM Plugins

	4.3 User Interfaces and Tools
	4.3.1 Carma
	4.3.2 The CoreASM Eclipse Plugin
	4.3.3 CSDe

	4.4 Using CoreASM: An Example
	4.4.1 Installing CoreASM
	4.4.2 Running the Railroad Crossing Example
	4.4.3 Using the Observer Plugin

	5 CoreASM Applications
	6 Related Work
	7 Conclusions and Future Work

