21 research outputs found

    Incorporating a Spatial Prior into Nonlinear D-Bar EIT imaging for Complex Admittivities

    Get PDF
    Electrical Impedance Tomography (EIT) aims to recover the internal conductivity and permittivity distributions of a body from electrical measurements taken on electrodes on the surface of the body. The reconstruction task is a severely ill-posed nonlinear inverse problem that is highly sensitive to measurement noise and modeling errors. Regularized D-bar methods have shown great promise in producing noise-robust algorithms by employing a low-pass filtering of nonlinear (nonphysical) Fourier transform data specific to the EIT problem. Including prior data with the approximate locations of major organ boundaries in the scattering transform provides a means of extending the radius of the low-pass filter to include higher frequency components in the reconstruction, in particular, features that are known with high confidence. This information is additionally included in the system of D-bar equations with an independent regularization parameter from that of the extended scattering transform. In this paper, this approach is used in the 2-D D-bar method for admittivity (conductivity as well as permittivity) EIT imaging. Noise-robust reconstructions are presented for simulated EIT data on chest-shaped phantoms with a simulated pneumothorax and pleural effusion. No assumption of the pathology is used in the construction of the prior, yet the method still produces significant enhancements of the underlying pathology (pneumothorax or pleural effusion) even in the presence of strong noise.Comment: 18 pages, 10 figure

    Nonlinear Inversion from Partial EIT Data: Computational Experiments

    Full text link
    Electrical impedance tomography (EIT) is a non-invasive imaging method in which an unknown physical body is probed with electric currents applied on the boundary, and the internal conductivity distribution is recovered from the measured boundary voltage data. The reconstruction task is a nonlinear and ill-posed inverse problem, whose solution calls for special regularized algorithms, such as D-bar methods which are based on complex geometrical optics solutions (CGOs). In many applications of EIT, such as monitoring the heart and lungs of unconscious intensive care patients or locating the focus of an epileptic seizure, data acquisition on the entire boundary of the body is impractical, restricting the boundary area available for EIT measurements. An extension of the D-bar method to the case when data is collected only on a subset of the boundary is studied by computational simulation. The approach is based on solving a boundary integral equation for the traces of the CGOs using localized basis functions (Haar wavelets). The numerical evidence suggests that the D-bar method can be applied to partial-boundary data in dimension two and that the traces of the partial data CGOs approximate the full data CGO solutions on the available portion of the boundary, for the necessary small kk frequencies.Comment: 24 pages, 12 figure

    Direct EIT Reconstructions of Complex Admittivities on a Chest-Shaped Domain in 2-D

    Get PDF
    Electrical impedance tomography (EIT) is a medical imaging technique in which current is applied on electrodes on the surface of the body, the resulting voltage is measured, and an inverse problem is solved to recover the conductivity and/or permittivity in the interior. Images are then formed from the reconstructed conductivity and permittivity distributions. In the 2-D geometry, EIT is clinically useful for chest imaging. In this work, an implementation of a D-bar method for complex admittivities on a general 2-D domain is presented. In particular, reconstructions are computed on a chest-shaped domain for several realistic phantoms including a simulated pneumothorax, hyperinflation, and pleural effusion. The method demonstrates robustness in the presence of noise. Reconstructions from trigonometric and pairwise current injection patterns are included

    A Data-Driven Edge-Preserving D-bar Method for Electrical Impedance Tomography

    Full text link
    In Electrical Impedance Tomography (EIT), the internal conductivity of a body is recovered via current and voltage measurements taken at its surface. The reconstruction task is a highly ill-posed nonlinear inverse problem, which is very sensitive to noise, and requires the use of regularized solution methods, of which D-bar is the only proven method. The resulting EIT images have low spatial resolution due to smoothing caused by low-pass filtered regularization. In many applications, such as medical imaging, it is known \emph{a priori} that the target contains sharp features such as organ boundaries, as well as approximate ranges for realistic conductivity values. In this paper, we use this information in a new edge-preserving EIT algorithm, based on the original D-bar method coupled with a deblurring flow stopped at a minimal data discrepancy. The method makes heavy use of a novel data fidelity term based on the so-called {\em CGO sinogram}. This nonlinear data step provides superior robustness over traditional EIT data formats such as current-to-voltage matrices or Dirichlet-to-Neumann operators, for commonly used current patterns.Comment: 24 pages, 11 figure

    A Direct D-Bar Method for Partial Boundary Data Electrical Impedance Tomography With a Priori Information

    Get PDF
    Electrical Impedance Tomography (EIT) is a non-invasive imaging modality that uses surface electrical measurements to determine the internal conductivity of a body. The mathematical formulation of the EIT problem is a nonlinear and severely ill-posed inverse problem for which direct D-bar methods have proved useful in providing noise-robust conductivity reconstructions. Recent advances in D-bar methods allow for conductivity reconstructions using EIT measurement data from only part of the domain (e.g., a patient lying on their back could be imaged using only data gathered on the accessible part of the body). However, D-bar reconstructions suffer from a loss of sharp edges due to a nonlinear low-pass filtering of the measured data, and this problem becomes especially marked in the case of partial boundary data. Including a priori data directly into the D-bar solution method greatly enhances the spatial resolution, allowing for detection of underlying pathologies or defects, even with no assumption of their presence in the prior. This work combines partial data D-bar with a priori data, allowing for noise-robust conductivity reconstructions with greatly improved spatial resolution. The method is demonstrated to be effective on noisy simulated EIT measurement data simulating both medical and industrial imaging scenarios

    Approximation of full-boundary data from partial-boundary electrode measurements

    Get PDF
    Measurements on a subset of the boundary are common in electrical impedance tomography, especially any electrode model can be interpreted as a partial boundary problem. The information obtained is different to full-boundary measurements as modeled by the ideal continuum model. In this study we discuss an approach to approximate full-boundary data from partial-boundary measurements that is based on the knowledge of the involved projections. The approximate full-boundary data can then be obtained as the solution of a suitable optimization problem on the coefficients of the Neumann-to-Dirichlet map. By this procedure we are able to improve the reconstruction quality of continuum model based algorithms, in particular we present the effectiveness with a D-bar method. Reconstructions are presented for noisy simulated and real measurement data
    corecore