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Abstract: 
Electrical Impedance Tomography (EIT) aims to recover the internal conductivity and permittivity distributions of 
a body from electrical measurements taken on electrodes on the surface of the body. The reconstruction task is 
a severely ill-posed nonlinear inverse problem that is highly sensitive to measurement noise and modeling 
errors. Regularized D-bar methods have shown great promise in producing noise-robust algorithms by 
employing a low-pass filtering of nonlinear (nonphysical) Fourier transform data specific to the EIT problem. 
Including prior data with the approximate locations of major organ boundaries in the scattering transform 
provides a means of extending the radius of the low-pass filter to include higher frequency components in the 
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reconstruction, in particular, features that are known with high confidence. This information is additionally 
included in the system of D-bar equations with an independent regularization parameter from that of the 
extended scattering transform. In this paper, this approach is used in the 2-D D-bar method for admittivity 
(conductivity as well as permittivity) EIT imaging. Noise-robust reconstructions are presented for simulated EIT 
data on chest-shaped phantoms with a simulated pneumothorax and pleural effusion. No assumption of the 
pathology is used in the construction of the prior, yet the method still produces significant enhancements of the 
underlying pathology (pneumothorax or pleural effusion) even in the presence of strong noise. 

SECTION I. Introduction 
Electrical Impedance Tomography (EIT) is a non-invasive radiation-free imaging modality in which low 
amplitude current is applied through electrodes placed on the surface of a body and the resulting voltages 
are measured. From these surface measurements, images of the interior conductivity and permittivity can 
be obtained. The severe ill-posedness of the inverse conductivity/permittivity problem limits the spatial 
resolution of the reconstructed images, which hinders their clinical applicability. Mathematical stability 
estimates for the problem can be found in,1–2,3,4 for example. The use of spatial a priori information in the 
solution of the inverse problem provides a means of including anatomical information that is present with 
high confidence, while still allowing unknown features such as lung pathologies to emerge in the 
reconstructed image without any assumption of their presence. In patients with serious respiratory illness, 
it is often the case that a CT scan is performed to obtain a diagnosis or for a regular exam in the case of a 
chronic illness, and the condition is monitored with one or more follow-up scans. The initial scan can 
provide basic a priori information for the reconstruction algorithm such as chest shape, approximate lung 
and heart sizes, and relative positions in the plane of the electrodes. 

The state-of-the-art of EIT in critical care thoracic imaging is to image 2-D slices in the plane of a belt of 
electrodes placed around the thorax. 5–6,7,8,9,10 Estimates of alveolar collapse and compliance can be 
determined from reconstructions of impedance changes in lung regions in these slices, and the 
gravitational vector inside the lung can be taken into account. 11 Ventilation and perfusion maps can also be 
created in these slices in real time, providing a method of monitoring PEEP titration. 7 

A priori information has been used successfully in iterative reconstruction algorithms to enhance image 
quality (see, for example, 12–13,14,15,16,17,18,19,20,21 for a partial list), and more recently in 22 in the direct 2-D D-
bar method for (real-valued) conductivity reconstruction. In this paper, the method of 22 is extended to the 
2-D D-bar algorithm for the reconstruction of complex admittivities. 23–24,25 The reconstruction algorithm for 
complex admittivities differs from the D-bar algorithm for real-valued conductivities in the construction of 
the complex geometrical optics (CGO) solutions. While the well-developed real-valued case 26–

27,28,29,30 utilizes the familiar transformation of the generalized Laplace equation governing the physical EIT 
problem to a Schrödinger equation, the complex admittivity algorithm requires transforming the problem 
to a first order elliptic system and constructing two sets of CGO solutions. The algorithm is described briefly 
in Section 2, and the reader is referred to 23–24, 25 for further detail. In 22 a method of including a priori 
information in the 2-D D-bar algorithm for real-valued conductivities was proposed and proved to be a 
nonlinear regularization strategy. It was tested on simulated data on a circular domain. The 2-D D-bar 
algorithm for reconstructing complex admittivities differs from the algorithm in 22 in several ways. First, 



a 2 × 2 elliptic system of equations must be solved to recover the complex admittivity, and so the 
scattering transform becomes a scattering matrix, and a system of first order PDEs in ∂𝑧𝑧 and ∂𝑧𝑧 arises for 
the CGO solutions. In contrast to the method in, 22 there are, in fact, two sets of CGO solutions to compute 
(described in Section II-B). Second, in contrast to, 22 determining the admittivity requires an additional 
computational step beyond evaluation of the CGO solution at complex frequency 𝑘𝑘 = 0 , as is the case for 
the methods based on. 31 In this work, the a priori information is included in the high-frequency component 
of the scattering matrix and in the appropriate CGO solution computations, which consist of two decoupled 
systems of integral equations. Thus, while the a priori information is in the analogous functions to those in, 
22 the overall algorithm contains some significant differences. The algorithm presented here is tested on 
realistic numerical phantoms on noncircular domains simulating a cross-sectional human chest. Similar 
phantoms have been used in, for example. 14, 32, and 33 
 
The method incorporates spatial a priori information about the admittivity distribution in the scattering 
transform, as well as in the system of D-bar equations, and includes regularization parameters in each place 
that can be adjusted to control the amount of influence the prior has on the reconstruction. This approach 
does come at the cost of solving the forward problem once using the prior admittivity distribution. For the 
D-bar method, the forward problem that is solved using the prior is not the generalized Laplace equation 
with the complete electrode model that is typically solved at each iteration by, for example, the finite 
element method, but rather the equations that define the CGO solutions. Also, depending upon how the 
prior is constructed, a preliminary reconstruction (that could be computed using the D-bar method with no 
prior, or a different method) may be required. In contrast, iterative methods include the prior in the cost 
functional in the regularization term, which does not come at additional computational cost. Both types of 
method run the risk of biasing the solution with the a priori information, and care must be taken in 
weighting such information. Depending upon the choice of weighting parameters, the segmented prior can 
be very strong or very weak. Post-processing methods also run the risk of introducing bias in the images. 

The effectiveness of the method is tested here on simulated data with 0.1% and 1.0% added Gaussian 
relative noise for a 2-D phantom chest with a simulated pleural effusion and with a simulated 
pneumothorax. No a priori information about the presence of the effusion or the pneumothorax is used in 
the reconstruction, only a priori spatial information about the heart and lung boundaries. Nevertheless, 
both the effusion and pneumothorax become considerably sharper than in images computed without the a 
priori organ boundary information. 

The organ boundaries of the “heart and lungs prior” are depicted in Figure 1(a). While the initial prior is 
piecewise constant, after conductivity and permittivity values have been assigned, the prior is mollified to 
obtain a smooth function since the method of computing the scattering transform for the prior requires 
that it be differentiated. Assigning the initial admittivity values to the prior can be done in a number of 
ways, and the a priori reconstruction algorithm presented here is valid for any assignment method. In our 
tests, we computed an initial reconstruction with no prior from the noisy data (which we will refer to as a 
standard D-bar reconstruction), then computed the maximum conductivity/permittivity in the heart region, 
and minimum conductivity/permittivity in each lung region of the piecewise constant “heart and lungs 



prior”, and assigned those values to each respective region of the piecewise constant prior. Further 
implementation details are found in Section III-B. 

 

 

Fig. 1. The “heart and lungs” phantom (a) and the test examples studied to simulate two pathologies: (b) a pneumothorax 
in the ventral part of the left lung and (c) a pleural effusion in the dorsal part of the left lung. The black lines correspond to 
true boundaries in the simulations, and the superimposed red dots are the organ boundaries used in the construction of the 
admittivity prior 𝛾𝛾PR before smoothing. 
 

The paper is organized as follows. The a priori method is presented in Section II, which first provides a brief 
description of the forward model in Section II-A used to simulate the EIT data, followed by a summary of 
the D-bar method for complex admittivity imaging in Section II-B, with the modifications for the a 
priori method described in Section II-C. The D-bar method for admittivity reconstruction is admittedly 
mathematically complicated, and the reader is referred to the papers 24, 25, 34 for further details. The 
numerical implementation and testing of the method is outlined in Section III, and the discussion and 
conclusions presented in Section IV. 

SECTION II. Methods 
A. The Forward Model 
The electric potential 𝑢𝑢(𝑥𝑥, 𝑦𝑦) inside the 2-D region Ω is modeled by the admittivity equation, a generalized 
Laplace equation, 

∇ ⋅ 𝛾𝛾(𝑥𝑥,𝑦𝑦)∇𝑢𝑢(𝑥𝑥, 𝑦𝑦) = 0, (1) 

(1) 

where 𝛾𝛾(𝑥𝑥,𝑦𝑦) = 𝜎𝜎(𝑥𝑥,𝑦𝑦) + 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥, 𝑦𝑦) denotes the complex valued admittivity, 𝜎𝜎(𝑥𝑥, 𝑦𝑦) the electrical 
conductivity (bounded away from zero 0 < 𝜎𝜎(𝑥𝑥,𝑦𝑦) < 𝐶𝐶), 𝜖𝜖(𝑥𝑥,𝑦𝑦) the electrical permittivity (assumed to 
be non-negative), and 𝜔𝜔 the angular frequency of the applied current. The boundary data for the inverse 
problem is the Dirichlet-to-Neumann (DN) map Λ𝛾𝛾  which maps a voltage at the boundary to the 



corresponding current density, i.e., Λ𝛾𝛾:𝑢𝑢|∂Ω ↦ 𝛾𝛾 ∂𝑢𝑢
∂𝜈𝜈

|∂Ω , where 𝜈𝜈 denotes the outward unit normal 

vector to the boundary ∂Ω . In practice, to dampen rather than amplify the noise in the measured data, 
currents are applied and the resulting voltages are measured. This corresponds to knowledge of 

the Neumann-to-Dirichlet ND map 𝑅𝑅𝛾𝛾: 𝛾𝛾 ∂𝑢𝑢
∂𝜈𝜈

|∂Ω ↦ 𝑢𝑢|∂Ω . Ensuring conservation of charge and specifying a 

ground, the ND map can be inverted to obtain the DN map Λ𝛾𝛾 = (𝑅𝑅𝛾𝛾)−1 . 

For the simulation of the data, a finite element implementation of the complete electrode model (CEM) 
was used. The CEM 35 takes into account both the shunting effect of the electrodes and the contact 
impedances between the electrodes and tissue. The complete electrode model consists of the 
admittivity equation (1) and the following boundary conditions on 𝐿𝐿 electrodes: 
 

𝑢𝑢 + 𝑧𝑧𝑙𝑙𝛾𝛾
∂𝑢𝑢
∂𝜈𝜈

= 𝑈𝑈𝑙𝑙 , 𝑥𝑥 ∈ 𝑒𝑒𝑙𝑙 , 𝑙𝑙 = 1,2, … , 𝐿𝐿

� 𝛾𝛾 ∂𝑢𝑢
∂𝜈𝜈
𝑑𝑑𝑑𝑑

𝑒𝑒𝑙𝑙
= 𝐽𝐽𝑙𝑙 , 𝑥𝑥 ∈ 𝑒𝑒𝑙𝑙 , 𝑙𝑙 = 1,2, … , 𝐿𝐿

𝛾𝛾 ∂𝑢𝑢
∂𝜈𝜈

= 0, 𝑥𝑥 ∈ ∂Ω ∖ ∪ 𝑒𝑒𝑙𝑙𝐿𝐿
𝑙𝑙=1 ,

, 

where 𝑧𝑧𝑙𝑙  is the effective contact impedance between the 𝑙𝑙𝑡𝑡ℎ electrode 𝑒𝑒𝑙𝑙  and the medium, 𝐽𝐽𝑙𝑙  is the applied 
current, and 𝑈𝑈𝑙𝑙  is the measured voltage. In addition, Kirchhoff’s Law and the choice of ground must be 
imposed to ensure existence and uniqueness of the result: 

�𝐽𝐽𝑙𝑙

𝐿𝐿

𝑙𝑙=1

= 0, and�𝑈𝑈𝑙𝑙

𝐿𝐿

𝑙𝑙=1

= 0. 

 

The uniqueness and existence of a solution to the CEM has been proven in. 36 

Since the D-bar method, described below, relies on CGO solutions to equations that do not include the 
CEM, there is an inherent modeling error introduced in the reconstructions. 

B. The D-Bar Method For Complex Admittivities 
D-bar methods are named for the partial derivatives with respect to the complex conjugates that arise in 

the equations in the methods. The ∂ operator with respect to the complex variable 𝑧𝑧 = 𝑥𝑥 + 𝑖𝑖𝑖𝑖 and the 
related operator ∂𝑧𝑧 are defined by 

∂𝑧𝑧 =
1
2

(
∂
∂𝑥𝑥

+ 𝑖𝑖
∂
∂𝑦𝑦

), ∂𝑧𝑧 =
1
2

(
∂
∂𝑥𝑥

− 𝑖𝑖
∂
∂𝑦𝑦

). 

Throughout the paper, ℝ2 is associated with ℂ via 𝑧𝑧 = (𝑥𝑥, 𝑦𝑦) ↦ 𝑥𝑥 + 𝑖𝑖𝑖𝑖 . 

The method described below is based on the uniqueness proof for the inverse admittivity problem, 37 which 
was completed as a constructive proof in. 23, 24 The work 37 was based on the real-valued paper [38] in 
which a 2 × 2 elliptic system was introduced to reduce the smoothness required in the constructive 
uniqueness proof. 31 An implementation of 38 was described in. 39 and 40 

https://ieeexplore.ieee.org/document/#deqn1


 
With the introduction of a non-physical complex parameter 𝑘𝑘, the admittivity equation (1) admits solutions 
with special exponentially growing behavior known as CGO solutions. In particular, it was shown in 24 that 

there exist separate solutions 𝑢𝑢1(𝑧𝑧, 𝑘𝑘) and 𝑢𝑢2(𝑧𝑧,𝑘𝑘) to (1) such that 𝑢𝑢1(𝑧𝑧,𝑘𝑘) ∼ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖
 and 𝑢𝑢2(𝑧𝑧, 𝑘𝑘) ∼

−𝑒𝑒−𝑖𝑖𝑖𝑖𝑧𝑧

𝑖𝑖𝑖𝑖
 for large |𝑘𝑘| or |𝑧𝑧| . 

 

Defining an operator vector 𝒟𝒟 = 𝛾𝛾1/2(∂z, ∂z)𝑇𝑇 , the change of variables 
 

𝑄𝑄(𝑧𝑧) = �
0 −1

2
∂z log 𝛾𝛾(𝑧𝑧)

−1
2
∂zlog 𝛾𝛾(𝑧𝑧) 0

� , (2) 

and 

(𝑀𝑀11,𝑀𝑀21)𝑇𝑇 = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝒟𝒟𝑢𝑢1, (𝑀𝑀12,𝑀𝑀22)𝑇𝑇 = 𝑒𝑒𝑖𝑖𝑖𝑖𝑧𝑧𝒟𝒟𝑢𝑢2  (3) 

transform the admittivity equation (1) into the first order elliptic system 37 

𝐷𝐷𝑘𝑘𝑀𝑀(𝑧𝑧,𝑘𝑘) − 𝑄𝑄(𝑧𝑧)𝑀𝑀(𝑧𝑧,𝑘𝑘) = 0, (4) 

where 

𝐷𝐷𝑘𝑘𝑀𝑀(𝑧𝑧, 𝑘𝑘) = �∂z 0
0 ∂z

�𝑀𝑀 − 𝑖𝑖𝑖𝑖 �1 0
0 −1� �

0 𝑀𝑀12
𝑀𝑀21 0 �  . 

 

Equation (4) has a unique solution 𝑀𝑀(⋅, 𝑘𝑘)) where each component of 𝑀𝑀(⋅, 𝑘𝑘) − 𝐼𝐼 is in 𝐿𝐿𝑝𝑝(ℝ2) for 
some 𝑝𝑝 > 2 , where I denotes the 2 × 2 identity matrix. 

D-bar methods follow the basic computational outline: 

DN map ↦ Scattering
Data ↦ CGO

Solutions ↦ Admittivity. 

 
The scattering data is a 2 × 2 matrix function 𝑆𝑆(𝑘𝑘) , not directly physically measurable from the data, with 
zero entries on the diagonal and off-diagonal entries given by 
 

𝑆𝑆12(𝑘𝑘) = 𝑖𝑖
𝜋𝜋
� 𝑄𝑄12(𝑧𝑧)𝑒𝑒(𝑧𝑧,−𝑘𝑘)𝑀𝑀22(𝑧𝑧, 𝑘𝑘)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
Ω

𝑆𝑆21(𝑘𝑘) = − 𝑖𝑖
𝜋𝜋 ∫ 𝑄𝑄21(𝑧𝑧)𝑒𝑒(𝑧𝑧,𝑘𝑘)𝑀𝑀11(𝑧𝑧,𝑘𝑘)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑Ω

 (5) 

where 𝑒𝑒(𝑧𝑧,𝑘𝑘) ≡ 𝑒𝑒𝑖𝑖(𝑘𝑘𝑘𝑘+𝑘𝑘𝑧𝑧) and supp 𝑄𝑄(𝑧𝑧) ⊆ Ω from (2). 

https://ieeexplore.ieee.org/document/#deqn1
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The DN map Λ𝛾𝛾  uniquely determines the scattering data 𝑆𝑆(𝑘𝑘) , and the scattering data uniquely 

determines the admittivity 𝛾𝛾(𝑧𝑧). 37 However, the relationship between the scattering data and the DN map 
relies on the intermediate computation of the CGO solutions 𝑢𝑢1and 𝑢𝑢2 on the boundary of Ω as well as 

functions Ψ12(𝑧𝑧, 𝑘𝑘) ≡ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑧𝑧𝑀𝑀12(𝑧𝑧, 𝑘𝑘) and Ψ21(𝑧𝑧, 𝑘𝑘) ≡ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑀𝑀21(𝑧𝑧, 𝑘𝑘) . This is described in Step 1 
below. 
 
Step 1: From Boundary Measurements to Scattering Data: 
For each |𝑘𝑘| ≤ 𝑅𝑅 , solve the following two boundary integral equations 

𝑢𝑢1(𝑧𝑧, 𝑘𝑘) = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖
− ∫ 𝐺𝐺𝑘𝑘∂Ω (𝑧𝑧 − 𝜁𝜁)(𝛿𝛿Λ𝛾𝛾)𝑢𝑢1(𝜁𝜁, 𝑘𝑘)𝑑𝑑𝑑𝑑(𝜁𝜁)

𝑢𝑢2(𝑧𝑧,𝑘𝑘) = −𝑒𝑒−𝑖𝑖𝑖𝑖𝑧𝑧

𝑖𝑖𝑖𝑖
− ∫ 𝐺𝐺𝑘𝑘∂Ω (𝜁𝜁 − 𝑧𝑧)(𝛿𝛿Λ𝛾𝛾)𝑢𝑢2(𝜁𝜁,𝑘𝑘)𝑑𝑑𝑑𝑑(𝜁𝜁)

 (6) 

for the traces of the CGO solutions 𝑢𝑢1 and 𝑢𝑢2 on the boundary. Here 𝐺𝐺𝑘𝑘(𝑧𝑧) denotes the Faddeev Green’s 
function for the Laplace operator given by (see 41, 42), 

𝐺𝐺𝑘𝑘(𝑧𝑧) = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖 �
𝑒𝑒𝑖𝑖𝑖𝑖⋅𝜉𝜉

𝜉𝜉(𝜉𝜉 + 2𝑘𝑘)
𝑑𝑑𝑑𝑑

ℝ2

, 

 

and 𝛿𝛿Λ𝛾𝛾 = Λ𝛾𝛾 − Λ1 where Λ1 denotes the DN map corresponding to a constant admittivity 1 and 𝛾𝛾 =
1 near ∂Ω . Provided that 𝛾𝛾 is a constant 𝛾𝛾𝑏𝑏 near ∂Ω , the DN map can be scaled as in. 28 

Next, compute the traces of the CGO solutions Ψ12 and Ψ21 from the second set of boundary integral 
equations 

Ψ12(𝑧𝑧,𝑘𝑘) = 𝑝𝑝. 𝑣𝑣.� 𝑒𝑒𝑖𝑖𝑘𝑘(𝑧𝑧−𝜁𝜁)

4𝜋𝜋(𝑧𝑧−𝜁𝜁)∂Ω
(𝛿𝛿Λ𝛾𝛾)𝑢𝑢2(𝜁𝜁, 𝑘𝑘)𝑑𝑑𝑑𝑑(𝜁𝜁)

Ψ21(𝑧𝑧,𝑘𝑘) = 𝑝𝑝. 𝑣𝑣.� �𝑒𝑒
𝑖𝑖𝑖𝑖(𝑧𝑧−𝜁𝜁)

4𝜋𝜋(𝑧𝑧−𝜁𝜁)
�

∂Ω

(𝛿𝛿Λ𝛾𝛾)𝑢𝑢1(𝜁𝜁, 𝑘𝑘)𝑑𝑑𝑑𝑑(𝜁𝜁),
 (7) 

where 𝑝𝑝.𝑣𝑣 . denotes the principal value of the integral. 

Then, compute the scattering transforms 𝑆𝑆12(𝑘𝑘) and 𝑆𝑆21(𝑘𝑘) : 
 

𝑆𝑆12(𝑧𝑧, 𝑘𝑘) = 𝑖𝑖
2𝜋𝜋
� 𝑒𝑒−𝑖𝑖𝑘𝑘𝑧𝑧
∂Ω

Ψ12(𝑧𝑧,𝑘𝑘)𝜈𝜈(𝑧𝑧)𝑑𝑑𝑑𝑑(𝑧𝑧)

𝑆𝑆21(𝑧𝑧,𝑘𝑘) = − 𝑖𝑖
2𝜋𝜋
� 𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧
∂Ω

Ψ21(𝑧𝑧,𝑘𝑘)𝜈𝜈(𝑧𝑧)𝑑𝑑𝑑𝑑(𝑧𝑧),
 (8) 

where 𝜈𝜈(𝑧𝑧) = (𝜈𝜈1(𝑧𝑧), 𝜈𝜈2(𝑧𝑧)) = 𝜈𝜈1(𝑧𝑧) + 𝑖𝑖𝜈𝜈2(𝑧𝑧) denotes the outward unit normal to ∂Ω at the point 𝑧𝑧 , 

and 𝜈𝜈(𝑧𝑧) denotes its complex conjugate. The parameter 𝑅𝑅 acts as a low-pass cutoff radius of the scattering 
data used to stabilize the reconstruction method in the presence of noise. The scattering data is set to zero 



for |𝑘𝑘| > 𝑅𝑅. This approach has been proved to be a nonlinear regularization strategy in the case of real-
valued conductivities. 43 Parallel computing can be used to solve equations (6) – (8) since each of these 
equations is solved for each 𝑘𝑘 independently. Further implementation details are found in Section III-B. 

Step 2: Computation of CGO Solutions: 

Let Ω+ be a domain slightly larger than Ω . This will be needed to numerically compute 

the ∂z and ∂z derivatives of the CGO solutions 𝑀𝑀(𝑧𝑧, 0) required to form the matrix potential 𝑄𝑄(𝑧𝑧) in Step 

3. For each 𝑧𝑧 ∈ Ω+ , solve the ∂𝑘𝑘  equation 
 

∂𝑘𝑘𝑀𝑀(𝑧𝑧, 𝑘𝑘) = 𝑀𝑀(𝑧𝑧, 𝑘𝑘) �𝑒𝑒(𝑧𝑧, 𝑘𝑘) 0
0 𝑒𝑒(𝑧𝑧,−𝑘𝑘)

� 𝑆𝑆(𝑘𝑘), (9) 

using the fundamental solution 1
𝜋𝜋𝜋𝜋

 for the ∂𝑘𝑘  operator, by solving the decoupled systems 

�
𝑀𝑀11(𝑧𝑧, 𝑘𝑘) = 1 + 1

𝜋𝜋𝜋𝜋
∗ [𝑀𝑀12(𝑧𝑧, 𝑘𝑘)𝑒𝑒(𝑧𝑧,−𝑘𝑘)𝑆𝑆21(𝑘𝑘)]

𝑀𝑀12(𝑧𝑧, 𝑘𝑘) = 0 + 1
𝜋𝜋𝜋𝜋
∗ [𝑀𝑀11(𝑧𝑧, 𝑘𝑘)𝑒𝑒(𝑧𝑧,𝑘𝑘)𝑆𝑆12(𝑘𝑘)]  (10) 

�
𝑀𝑀21(𝑧𝑧,𝑘𝑘) = 0 + 1

𝜋𝜋𝜋𝜋
∗ [𝑀𝑀22(𝑧𝑧,𝑘𝑘)𝑒𝑒(𝑧𝑧,−𝑘𝑘)𝑆𝑆21(𝑘𝑘)]

𝑀𝑀22(𝑧𝑧,𝑘𝑘) = 1 + 1
𝜋𝜋𝜋𝜋
∗ [𝑀𝑀21(𝑧𝑧, 𝑘𝑘)𝑒𝑒(𝑧𝑧, 𝑘𝑘)𝑆𝑆12(𝑘𝑘)].

 (11) 

The convolutions ∗ take place in 𝑘𝑘 over the disc of radius 𝑅𝑅 as 𝑆𝑆𝑖𝑖𝑖𝑖(𝑘𝑘) now has compact support. The 
systems are solved numerically as in. 44 

Step 3: From CGO Solutions to the Admittivity: 
Using the CGO solutions corresponding to 𝑘𝑘 = 0 , compute the potentials (only one is actually needed) 
 

𝑄𝑄12(𝑧𝑧) = ∂z[𝑀𝑀11(𝑧𝑧,0)+𝑀𝑀12(𝑧𝑧,0)]
𝑀𝑀22(𝑧𝑧,0)+𝑀𝑀21(𝑧𝑧,0)

𝑄𝑄21(𝑧𝑧) = ∂z[𝑀𝑀22(𝑧𝑧,0)+𝑀𝑀21(𝑧𝑧,0)]
𝑀𝑀11(𝑧𝑧,0)+𝑀𝑀12(𝑧𝑧,0)

,
 (12) 

and from these, compute the admittivity 𝛾𝛾(𝑧𝑧) using either 

𝛾𝛾(𝑧𝑧) = exp �− 2
𝜋𝜋𝑧𝑧
∗ 𝑄𝑄12(𝑧𝑧)� = exp �− 2

𝜋𝜋𝜋𝜋
∗ 𝑄𝑄21(𝑧𝑧)� , (13) 

where the convolution in 𝑧𝑧 takes place over Ω since 𝑄𝑄 has compact support. 

The reader is referred to 23, 25, 34 for developments and implementations of numerical algorithms for 
complex D-bar EIT imaging. 

https://ieeexplore.ieee.org/document/#deqn6
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C. Inclusion of a priori Admittivity Information 
The low-pass filtering (setting 𝑆𝑆(𝑘𝑘) = 0 for |𝑘𝑘| > 𝑅𝑅 ) in the non-physical scattering domain has an effect 
similar to that of traditional low-pass filtering in the standard Fourier domain. As |𝑘𝑘| → ∞ , 𝑀𝑀(⋅, 𝑘𝑘) ∼

𝐼𝐼 and thus the scattering data in (5) reduces to 𝑆𝑆12(𝑘𝑘) ≈ 𝑖𝑖
𝜋𝜋
𝑄𝑄12

^
(2𝑘𝑘1, 2𝑘𝑘2) and 𝑆𝑆21(𝑘𝑘) ≈

− 𝑖𝑖
𝜋𝜋
𝑄𝑄21

^
(−2𝑘𝑘1, 2𝑘𝑘2) . Thus, for large |𝑘𝑘| the scattering data are essentially shifted Fourier transforms of 

the potential 𝑄𝑄(𝑧𝑧) . Hence, it is reasonable to expect a loss of sharp edges in reconstructions of 𝛾𝛾(𝑧𝑧) from 
the low-pass filtered scattering data. 
 
In practice, the scattering data computed via the boundary integral equations (8) “blows up” in magnitude 
as |𝑘𝑘| increases, sometimes as early as |𝑘𝑘| = 3.5 due to the presence of noise. The relationship between 
blow-up in the scattering transform and noise was established for the real-valued D-bar method in, 43 
where a bound was established on the error in the scattering transform in a disk whose radius is a function 
of the noise level. In the absence of noise, the scattering transform can be computed with high fidelity in a 
disk of large radius. 30, 42, 43 This motivates the use of a scattering transform computed from the forward 
problem for the prior in an annulus outside the disk of the experimental scattering data. This approach 
differs significantly from the methods based on post-processing D-bar conductivity images. 45, 46 
 
The original scattering data is augmented by the scattering data that corresponds to the prior outside the 
feasible region of computation of the true scattering data. Denoting the scattering data from the 
admittivity prior by 𝑆𝑆PR , and the feasible region of computation by |𝑘𝑘| ≤ 𝑅𝑅 , we form the new extended 
scattering data via the formula 

𝑆𝑆𝑅𝑅,𝑅𝑅2(𝑘𝑘): = �
𝑆𝑆(𝑘𝑘) |𝑘𝑘| ≤ 𝑅𝑅

SPR (𝑘𝑘) 𝑅𝑅 < |𝑘𝑘| ≤ 𝑅𝑅2
0 𝑅𝑅2 < |𝑘𝑘|,

 (14) 

where 𝑆𝑆(𝑘𝑘) is computed from current and voltage measurements using (8) for |𝑘𝑘| ≤ 𝑅𝑅 . The truncation 
radius 𝑅𝑅2 controls the amount of influence the inclusion of SPR has on the reconstruction. The larger 𝑅𝑅2 , 
the greater the influence. When 𝑅𝑅2 = 𝑅𝑅 , there is no inclusion of SPR . Note that since |SPR| →
0 as |𝑘𝑘| → ∞, the influence of SPR does not grow without bound as 𝑅𝑅2 increases. 

The second place that a priori information is included in the reconstruction method is in the integral forms 
of the D-bar equations, systems (10) and (11). The +1 and +0 terms in (10), (11)arise from terms of the form 

𝑙𝑙𝑙𝑙𝑙𝑙
𝑅𝑅→∞

1
𝜋𝜋𝑅𝑅2

� 𝑀𝑀𝑖𝑖𝑖𝑖|𝑘𝑘|≤𝑅𝑅
(𝑧𝑧,𝑘𝑘)𝑑𝑑𝑑𝑑, 𝑖𝑖, 𝑗𝑗 = 1,2, (15) 

whose limits are 0 for 𝑀𝑀12 and 𝑀𝑀21 and 1 for 𝑀𝑀11 and 𝑀𝑀22 . Analogously to, 22 to include a 
priori information encoded in the CGO solutions, the terms in (15) are replaced by a weighted integral, 
which we will denote by 
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Mij
int ≡ �

𝛼𝛼 + (1− 𝛼𝛼)� 𝑀𝑀𝑖𝑖𝑖𝑖
𝑃𝑃𝑃𝑃

|𝑘𝑘|≤𝑅𝑅2
(𝑧𝑧,𝑘𝑘)𝑑𝑑𝑑𝑑, 𝑖𝑖 = 𝑗𝑗,

0 + (1 − 𝛼𝛼)� 𝑀𝑀𝑖𝑖𝑖𝑖
𝑃𝑃𝑃𝑃

|𝑘𝑘|≤𝑅𝑅2
(𝑧𝑧,𝑘𝑘)𝑑𝑑𝑑𝑑, 𝑖𝑖 ≠ 𝑗𝑗

 (16) 

Note, when 𝛼𝛼 = 1 and 𝑅𝑅2 = 𝑅𝑅 the method reduces to the original D-bar method of Section II-B without a 
priori information. Using 𝛼𝛼 = 0 corresponds to the heaviest weighting of (i.e. greatest trust in) the prior for 
the replacement of the asymptotic condition. 

We summarize the steps of the a priori method. The final approximation to the admittivity is denoted 
by 𝛾𝛾new . 
 

1. Setup: 

Compute the DN map Λ𝛾𝛾  from the voltage and current measurements and determine an admittivity 

prior 𝛾𝛾PR . 
 

2. Computation of Scattering Data 𝑆𝑆𝑅𝑅,𝑅𝑅2  : 
 
Compute the extended scattering 𝑆𝑆𝑅𝑅,𝑅𝑅2  via (14). This involves using Step 1 of Section II-B to 

compute the traditional scattering data 𝑆𝑆(𝑘𝑘) for |𝑘𝑘| ≤ 𝑅𝑅 . To obtain SPR computationally, the 
smoothed admittivity prior is first used to compute the potential QPR via (2). Then, for |𝑘𝑘| ≤ 𝑅𝑅2 , 
the system (4) is solved, and the resulting matrix of CGO solutions is denoted by MPR(⋅, 𝑘𝑘) . The 
scattering data SPR(𝑘𝑘) is then computed via (5) using QPR and MPR in these equations. 
 

3. Computation of CGO solutions: 

Using the extended scattering data 𝑆𝑆𝑅𝑅,𝑅𝑅2  , solve the systems (10) and (11) with (16) replacing the 

constant terms 0 and 1 to obtain CGO solutions 𝑀𝑀𝑖𝑖𝑖𝑖(𝑧𝑧, 𝑘𝑘), 𝑖𝑖 , 𝑗𝑗 = 1,2, 𝑧𝑧 ∈ Ω , where 

𝑀𝑀11(𝑧𝑧, 𝑘𝑘) = M11
int + 1

𝜋𝜋𝜋𝜋
∗ [𝑀𝑀12(𝑧𝑧, 𝑘𝑘)𝑒𝑒(𝑧𝑧,−𝑘𝑘)𝑆𝑆21(𝑘𝑘)]

𝑀𝑀12(𝑧𝑧, 𝑘𝑘) = M12
int + 1

𝜋𝜋𝜋𝜋
∗ [𝑀𝑀11(𝑧𝑧,𝑘𝑘)𝑒𝑒(𝑧𝑧,𝑘𝑘)𝑆𝑆12(𝑘𝑘)]

𝑀𝑀21(𝑧𝑧,𝑘𝑘) = M21
int + 1

𝜋𝜋𝜋𝜋
∗ [𝑀𝑀22(𝑧𝑧, 𝑘𝑘)𝑒𝑒(𝑧𝑧,−𝑘𝑘)𝑆𝑆21(𝑘𝑘)]

𝑀𝑀22(𝑧𝑧,𝑘𝑘) = M22
int + 1

𝜋𝜋𝜋𝜋
∗ [𝑀𝑀21(𝑧𝑧, 𝑘𝑘)𝑒𝑒(𝑧𝑧, 𝑘𝑘)𝑆𝑆12(𝑘𝑘)].

 (17) 

4. From CGO solutions to the Admittivity 𝛾𝛾𝐧𝐧𝐧𝐧𝐧𝐧(𝑧𝑧) : 
 
This is computed in the same manner as Step 3 in Section II-B to 
obtain 𝛾𝛾new via (12) using 𝑀𝑀𝑖𝑖𝑖𝑖(𝑧𝑧, 𝑘𝑘), 𝑖𝑖, 𝑗𝑗 = 1,2 , and subsequently (13). 
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SECTION III. Simulation and Implementation 
A. Simulation of Voltage Data 
The FEM was used to simulate voltages for each of the test problems using the Complete Electrode Model 
(CEM) on the chest-shaped domain in Figure 1 of perimeter 1016 mm, with 𝐿𝐿 = 32 electrodes of length 22 
mm and height 13.5 mm (area 297𝑚𝑚𝑚𝑚2 .) The contact impedance was set to 2.4 × 10−3 on all 
electrodes, and trigonometric current patterns with amplitude 𝐶𝐶 = 1 mA were used. The trigonometric 
current patterns are given by 

𝑇𝑇ℓ
𝑗𝑗: = �

𝐶𝐶cos (𝑗𝑗𝜃𝜃ℓ) 1 ≤ ℓ, 1 ≤ 𝑗𝑗 ≤ 𝐿𝐿
2

𝐶𝐶sin ((𝐿𝐿
2
− 𝑗𝑗)𝜃𝜃ℓ) 1 ≤ ℓ, 𝐿𝐿

2
+ 1 ≤ 𝑗𝑗 ≤ 𝐿𝐿 − 1, (18) 

where 𝜃𝜃ℓ = 2𝜋𝜋ℓ
𝐿𝐿

 corresponds to the angle of the center point 𝑧𝑧ℓ = 𝑅𝑅(𝜃𝜃ℓ)𝑒𝑒𝑖𝑖𝜃𝜃ℓ of the ℓ -th electrode 𝑒𝑒ℓ . 

The quantity 𝑇𝑇ℓ
𝑗𝑗  therefore represents the current applied on 𝑒𝑒ℓ corresponding to the 𝑗𝑗 -th current pattern. 

Note that 𝐿𝐿 − 1 linearly independent current patterns were applied since 𝐿𝐿 electrodes were used in the 
simulations. 

Zero mean Gaussian relative noise was added to each complex-valued vector of simulated voltages 𝑉𝑉𝑗𝑗  in 
the same manner as 25 as follows. Let 𝜂𝜂 denote the desired noise level and 𝑁𝑁𝑗𝑗  a vector of Gaussian zero 
mean noise that is unique for each current pattern 𝑗𝑗 (and each test scenario). Then, the real and imaginary 

parts of the noisy voltage data 𝑉𝑉
~
𝑗𝑗  were computed as 

 

ℜ(𝑉𝑉
~
𝑗𝑗) = ℜ(𝑉𝑉𝑗𝑗) + 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂|ℜ(𝑉𝑉𝑗𝑗)|𝑁𝑁𝑗𝑗

ℑ(𝑉𝑉
~
𝑗𝑗) = ℑ(𝑉𝑉𝑗𝑗) + 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂|ℑ(𝑉𝑉𝑗𝑗)|𝑁𝑁𝑗𝑗 .

 (19) 

The discrete approximation Λ𝛾𝛾𝑀𝑀  to the D-N map was computed as in, 27, 28 where it is formed from the inner 

product of the vectors of current and voltage, which are discrete approximations in ℂ𝐿𝐿−1 and ℂ𝐿𝐿 , 

respectively. Denoting by 𝑡𝑡ℓ
𝑗𝑗  the (ℓ, 𝑗𝑗) -th entry of the matrix of applied currents with each column 

normalized with respect to the 𝑙𝑙2 -vector norm, 𝑡𝑡ℓ
𝑗𝑗 = 𝑇𝑇𝑗𝑗

‖𝑇𝑇𝑗𝑗‖2
 , let 𝑣𝑣ℓ

𝑗𝑗  denote the entries of the 𝑗𝑗 -th voltage 

vector normalized so that � 𝑣𝑣ℓ
𝑗𝑗

𝐿𝐿

ℓ=1
= 0 and 𝑣𝑣ℓ

𝑗𝑗 = 𝑉𝑉ℓ
‖𝑇𝑇𝑗𝑗‖2

 . Let |𝑒𝑒ℓ|denote the area of the ℓ -th electrode. 

Then Λ𝛾𝛾𝑀𝑀 = (𝑅𝑅𝛾𝛾𝑀𝑀)−1 where the (𝑚𝑚,𝑛𝑛) -th entry of 𝑅𝑅𝛾𝛾𝑀𝑀  is given by 

𝑅𝑅𝛾𝛾𝑀𝑀(𝑚𝑚,𝑛𝑛): = 𝛾𝛾𝑏𝑏
|𝑒𝑒ℓ|

� 𝑡𝑡ℓ𝑚𝑚
𝐿𝐿
ℓ=1 𝑣𝑣ℓ𝑛𝑛, (20) 

where 𝛾𝛾𝑏𝑏 denotes the background admittivity near ∂Ω . 



We consider two phantoms with simulated pathologies depicted in Figure 1: (b) a pneumothorax, (c) a 
pleural effusion. For both scenarios, the admittivity of the heart was 1.1 + 0.6𝑖𝑖 S/m, the lungs 0.5 +
0.4𝑖𝑖 S/m, and the background 0.8 + 0.4𝑖𝑖 S/m. The pneumothorax was set to 0.25 + 0𝑖𝑖 S/m and the 
pleural effusion to 1.1 + 0.6𝑖𝑖 S/m. All images are shown in DICOM orientation in which the left lung is on 
the viewer’s right, as if viewed from the subject’s feet. 
 

B. Implementation of the a priori Method 
In this paper, the admittivity prior 𝛾𝛾PR was computed using a standard D-bar reconstruction 𝛾𝛾𝐷𝐷𝐷𝐷 recovered 
using Steps 1-3 of Section II-B with the measured data Λ𝛾𝛾  . However, in practice, any initial prior 𝛾𝛾𝐏𝐏𝐏𝐏 can be 
used, making the method easily adaptable to other approaches. 
 

1. The matrix approximation to the DN map Λ𝛾𝛾  was formed using the noisy voltages computed from 

the CEM. The admittivity prior 𝛾𝛾PR was formed as follows. First the standard D-bar 
reconstruction 𝛾𝛾DB was computed using Steps 1-3 of Section II-B (see 25 for details regarding the 
computation of 𝛾𝛾DB ). Next, using the “heart and lungs prior” (see the red dots of Figure 1), the 
maximum value of the pixels in the heart region and minimum pixel value in each lung region were 
computed, and the corresponding value assigned to each region to form the admittivity prior 𝛾𝛾PR . 
Note that the spatial prior does not assume any pathology is present. The prior 𝛾𝛾PR was then 
mollified to a 𝐶𝐶1 smooth version and QPR computed using finite differences for 

the ∂z and ∂z derivatives of log (𝛾𝛾PR(𝑧𝑧)) . 
 

2. The extended scattering data 𝑆𝑆𝑅𝑅,𝑅𝑅2  was computed via (14). Using the DN maps Λ𝛾𝛾  and Λ1 , the 

traditional scattering data 𝑆𝑆(𝑘𝑘) for |𝑘𝑘| ≤ 𝑅𝑅 was determined via Step 1 of Section II-B. The reader is 
referred to 25 for the computational details of computing 𝑢𝑢1 and 𝑢𝑢2 and 
subsequently 𝜓𝜓12 and 𝜓𝜓21 . Briefly, the Fredholm integral equations for 𝑢𝑢1 and 𝑢𝑢1 (6) are solved by 
a Galerkin method, and the integrals for evaluating 𝜓𝜓12 and 𝜓𝜓21and scattering data 𝑆𝑆(𝑘𝑘) , |𝑘𝑘| ≤
𝑅𝑅 in (8) are computed using a Simpson’s rule, with the 32 electrode centers on the boundary as the 
discretization points in the quadrature. This is suitable since these are the points in 𝑧𝑧 for 
which Ψ12 and Ψ21 are known, and since the scattering transforms are not highly oscillatory at the 
values of 𝑘𝑘 for which they are computed here. The scattering prior SPR was determined as follows. 
First, the admittivity prior 𝛾𝛾PR is smoothed to compute the potential QPR via (2). Then, for |𝑘𝑘| ≤
𝑅𝑅2 , the system (4) was solved for 𝑀𝑀PR using Fourier transforms on the following two decoupled 
systems: 
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�
𝑀𝑀11
𝐏𝐏𝐏𝐏(𝑧𝑧, 𝑘𝑘) = 1 + 1

𝜋𝜋𝜋𝜋
∗ [𝑄𝑄12𝐏𝐏𝐏𝐏(𝑧𝑧)𝑀𝑀21

𝐏𝐏𝐏𝐏(𝑧𝑧,𝑘𝑘)]

𝑀𝑀21
𝐏𝐏𝐏𝐏(𝑧𝑧, 𝑘𝑘) = 0 + 𝑒𝑒(𝑧𝑧,−𝑘𝑘)

𝜋𝜋𝑧𝑧
∗ [𝑄𝑄21𝐏𝐏𝐏𝐏(𝑧𝑧)𝑀𝑀11

𝐏𝐏𝐏𝐏(𝑧𝑧,𝑘𝑘)]

�
𝑀𝑀12
𝐏𝐏𝐏𝐏(𝑧𝑧, 𝑘𝑘) = 0 + 𝑒𝑒(𝑧𝑧,𝑘𝑘)

𝜋𝜋𝜋𝜋
∗ [𝑄𝑄12𝐏𝐏𝐏𝐏(𝑧𝑧)𝑀𝑀22

𝐏𝐏𝐏𝐏(𝑧𝑧,𝑘𝑘)]

𝑀𝑀22
𝐏𝐏𝐏𝐏(𝑧𝑧,𝑘𝑘) = 1 + 1

𝜋𝜋𝑧𝑧
∗ [𝑄𝑄21𝐏𝐏𝐏𝐏(𝑧𝑧)𝑀𝑀12

𝐏𝐏𝐏𝐏(𝑧𝑧,𝑘𝑘)],

 (21) 

where the convolutions take place in 𝑧𝑧 over Ω . Using a uniform 𝑧𝑧 -grid of size 2𝑚𝑚 × 2𝑚𝑚 with 
stepsize ℎ , convolutions such as 1

𝜋𝜋𝜋𝜋
∗ 𝑓𝑓(𝑧𝑧) can be implemented as 

1
𝜋𝜋𝜋𝜋 ∗ 𝑓𝑓(𝑧𝑧) = ℎ2IFFT2 �𝐹𝐹𝐹𝐹𝐹𝐹2 �

1
𝜋𝜋𝜋𝜋�𝐹𝐹𝐹𝐹𝐹𝐹2(𝑓𝑓(𝑧𝑧))�. 

A matrix-free solution of the resulting system for each value of 𝑧𝑧 was computed using GMRES with 
the parameters (RESTART= 10, tol= 10−6 , and MAXIT= 50). The system can be solved in parallel 
for each 𝑧𝑧 in Ω . The scattering prior is then evaluated via (5) using Simpson’s rule, and the 
combined scattering data 𝑆𝑆𝑅𝑅,𝑅𝑅2  is subsequently formed via (14). 

3. Choose a regularization weight 𝛼𝛼 ∈ [0,1] . Using the combined scattering data 𝑆𝑆𝑅𝑅,𝑅𝑅2  , the CGO 

solutions 𝑀𝑀11
𝑅𝑅2,𝛼𝛼 and 𝑀𝑀12

𝑅𝑅2,𝛼𝛼were recovered using Fourier transforms to solve the 
modified equations (22) 

⎩
⎪
⎨

⎪
⎧ 𝑀𝑀11

𝑅𝑅2,𝛼𝛼(𝑧𝑧, 𝑘𝑘) = 𝑀𝑀11
𝐢𝐢𝐢𝐢𝐢𝐢(𝑧𝑧) + 1

𝜋𝜋𝜋𝜋

∗ �𝑀𝑀12
𝑅𝑅2,𝛼𝛼(𝑧𝑧,𝑘𝑘)𝑒𝑒(𝑧𝑧,−𝑘𝑘)𝑆𝑆𝑅𝑅,𝑅𝑅2

21 (𝑘𝑘)�

𝑀𝑀12
𝑅𝑅2,𝛼𝛼(𝑧𝑧, 𝑘𝑘) = 𝑀𝑀12

𝐢𝐢𝐢𝐢𝐢𝐢(𝑧𝑧) + 1
𝜋𝜋𝜋𝜋

∗ �𝑀𝑀11
𝑅𝑅2,𝛼𝛼(𝑧𝑧, 𝑘𝑘)𝑒𝑒(𝑧𝑧, 𝑘𝑘)𝑆𝑆𝑅𝑅,𝑅𝑅2

12 (𝑘𝑘)�

 (22) 

where the convolutions take place in 𝑘𝑘 over |𝑘𝑘| ≤ 𝑅𝑅2 and 𝑀𝑀𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖 computed from (16) using a 

Simpson’s rule. An analogous system is solved to recover 𝑀𝑀21
𝑅𝑅2,𝛼𝛼 and 𝑀𝑀22

𝑅𝑅2,𝛼𝛼 . 

4. The new admittivity is recovered in the same manner as Step 3 of Section II-B to 

obtain 𝛾𝛾new via (12) using finite differences on 𝑀𝑀𝑖𝑖𝑖𝑖
𝑅𝑅2,𝛼𝛼(𝑧𝑧, 0), 𝑖𝑖, 𝑗𝑗 = 1,2, and subsequently Fourier 

transforms to solve (13). 
 

C. Examples 
In this work, two noise levels were considered: 0.1% added relative noise and 1.0% relative noise. For each 
example, we present results with three values of the truncation radius 𝑅𝑅2 in the prior, and three 
regularization weights for the D-bar equation: 𝛼𝛼 = 0,0.5,1 . Recall that 𝛼𝛼 = 0 corresponds to the 
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strongest weight and 𝛼𝛼 = 1 to no weight given (see (16)). Due to the ill-posedness of the inverse problem, 
the radii 𝑅𝑅 of admissible scattering data is problem specific, and the scattering transform will blow up in 
the presence of noise at a rate that is more rapid in some directions in the 𝑘𝑘 -plane than others. The value 
chosen for each example was chosen empirically to be as large as possible without exhibiting blow up in the 
initial reconstruction without a priori information. The blow-up was more rapid in the case of 1% noise, and 
so in those examples a non-uniform truncation of the scattering transform was used. In such cases a 
threshold of the scattering data 𝑆𝑆(𝑘𝑘) was enforced by setting 𝑆𝑆𝑖𝑖𝑖𝑖(𝑘𝑘) = 0 if |ℜ(𝑆𝑆𝑖𝑖𝑖𝑖)| >
0.15 or |ℑ(𝑆𝑆𝑖𝑖𝑖𝑖)| > 0.15 , where the value 0.15 was chosen empirically to be the largest permissible value 
of the magnitude. Determining such a threshold is intuitive from a plot of the scattering data since the 
blowup rate is exponential. 
 
The admittivity prior 𝛾𝛾PR consisted of approximate knowledge of the organ boundaries (see Figure 1) with 
no assumption of pathology in the lungs. The values used for the prior are given in Table I.  
 
TABLE I Admittivity Values Used in the Examples of a Simulated Pneumothorax and Pleural Effusion in the Left Lung 

 

 

1) Example 1: Simulated Pneumothorax: 
This test problem corresponds to phantom (b) in Figure 1. The preliminary reconstruction with no prior was 
computed for the 0.1% added noise case using a radius of 𝑅𝑅 = 4.5 , and for the 1% added noise case using 
a nonuniform truncation with a maximum radius of 𝑅𝑅 = 4.0 . Table I contains the values of the true 
admittivity in each region as well as the values assigned to the “heart and lungs prior” for 0.1% and 1% 
noise. We emphasize that we assume only approximate knowledge of the boundaries of the heart and 
lungs (see the red dots in Figure 1(b)), and no knowledge of the presence of a pneumothorax. Figure 
2 compares the true phantom to the D-bar reconstruction with no prior, as well as to the reconstructed 
admittivity using the new method for the strongest use of the prior (𝛼𝛼 = 0 and 𝑅𝑅2 = 9.0 ) for 0.1% noise. 
Additional reconstructions varying the truncation radii (𝑅𝑅2 = 4.5,6.75,9.0 ) for the prior as well as weights 
(𝛼𝛼 = 0,0.5,1 ) are found in Figure 3. Reconstructions for the 1% added relative noise case with truncation 
radii for the prior 𝑅𝑅2 = 4,6,8 and weights 𝛼𝛼 = 0,0.5,1 are shown in Figure 4. Table II compares 
the ℓ2 relative errors in the heart, right lung, healthy portion of the left lung, as well as the entire left lung 
region for each value of the parameters 𝑅𝑅2 and 𝛼𝛼 to the D-bar reconstruction with no prior. As the true 
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value of the pneumothorax has zero permittivity, the absolute ℓ2 errors are given for that region rather 
than relative errors. Additionally, the minimum pixel value for the reconstruction in the pneumothorax 
region is provided. 
 
TABLE II Errors for the Pneumothorax Example: The ℓ2 Relative Errors in the Heart, Right Lung, Healthy Portion of the Left Lung, and 

Entire Left Lung are Listed. Additionally, for the Pneumothorax Region, the Absolute ℓ2 Error is Presented as Well as the Minimum Pixel 
Value in the Region. Errors are Listed as (Conductivity, Permittivity) 
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Fig. 2. Reconstructions for the pneumothorax example with 0.1% noise plotted on the same scale. Left: the true admittivity. Middle: the 

initial D-bar reconstruction 𝛾𝛾DB . Right: the new admittivity 𝛾𝛾new with strongest prior 𝑅𝑅2 = 9.0 and 𝛼𝛼 = 0 all plotted on the same 
scale. 
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Fig. 3. Reconstructions of simulated pneumothorax with 0.1% added noise. Regularization parameter 𝛼𝛼 = 1,0.5,0 increases the 

influence of Mij
int as 𝛼𝛼 decreases, and 𝑅𝑅2 = 4.5,6.75,9.0 (rows) increases the influence of SPR as 𝑅𝑅2 increases. No pneumothorax is 

assumed to be present in the prior. Max conductivity: 1.1608, max permittivity: 0.7983. 



 



 

Fig. 4. Reconstructions of simulated pneumothorax with 1.0% added noise. Regularization parameter 𝛼𝛼 = 1,0.5,0 increases the 

influence of Mij
int as 𝛼𝛼 decreases, and 𝑅𝑅2 = 4,6,8 (rows) increases the influence of SPR as 𝑅𝑅2 increases. No pneumothorax is 

assumed to be present in the prior. Max conductivity: 1.1187, max permittivity: 0.8820. 

2) Example 2: Simulated Pleural Effusion: 
This test problem corresponds to phantom (c) in Figure 1. The preliminary reconstruction with no prior was 
computed for the 0.1% added noise case using a radius of 𝑅𝑅 = 5.5, and for the 1% added noise case using 
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a nonuniform truncation with a maximum radius of 𝑅𝑅 = 4.5 . Table I presents the values used in the 
prior 𝛾𝛾PR for each noise level and Figure 5 compares the true phantom to reconstructions using the D-bar 
method with no prior and the new method for the strongest weight of the prior at 0.1% added noise. 
Reconstructions for additional truncation radii (𝑅𝑅2 = 5.5,8.25,11) and weights (𝛼𝛼 = 0,0.5,1) of the prior 
are found in Figure 6. Reconstructions for the 1% added relative noise case with truncation radii for the 
prior 𝑅𝑅2 = 4.5,6.75,9.0 and weights 𝛼𝛼 = 0,0.5,1 are shown in Figure 7. Table III compares the ℓ2 relative 
errors of the D-bar reconstruction with no prior to those of the new method in each region, and also gives 
the maximum value in the pleural effusion region. 
 
TABLE III Errors for the Pleural Effusion Example: The ℓ2 Relative Errors in Each Region as Well as the Maximum Pixel Value in the Region 
Containing the Pleural Effusion. Errors are Listed as (Conductivity, Permittivity) 

 

 

 

 



 

Fig. 5. Reconstructions for the pleural effusion example with 0.1% noise plotted on the same scale. Left: the true admittivity. Middle: the 

initial D-bar reconstruction 𝛾𝛾DB. Right: the new admittivity 𝛾𝛾new with strongest prior 𝑅𝑅2 = 11.0 and 𝛼𝛼 = 0 all plotted on the same 

scale maxed out at 1.1 + 0.6𝑖𝑖. 
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Fig. 6. Reconstructions of simulated pleural effusion with 0.1% added noise. Regularization parameter 𝛼𝛼 = 1,0.5,0 increases the 

influence of Mij
int as 𝛼𝛼 decreases, and 𝑅𝑅2 = 5.5,8.25,11 (rows) increases the influence of SPR as 𝑅𝑅2 increases. No effusion is 

assumed to be present in the prior. Max conductivity: 1.1537, max permittivity 0.7416. 
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Fig. 7. Reconstructions of simulated pleural effusion with 1.0% added noise. Regularization parameter 𝛼𝛼 = 1,0.5,0 increases the 

influence of Mij
int as 𝛼𝛼 decreases, and 𝑅𝑅2 = 4.5,6.75,9.0 (rows) increases the influence of SPR as 𝑅𝑅2 increases. No effusion is 

assumed to be present in the prior. Max conductivity: 1.2452, max permittivity: 0.9699. 
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SECTION IV. Discussion and Conclusions 
In Figures 3, 4, 6, and 7, the upper left figure corresponds to the weakest/no prior, and the weight of the 
prior increases to the right and down the columns. It is evident that the spatial resolution of the organ 
boundaries improves with the introduction of the prior and as the influence of the prior increases. The 
colormaps are maxed out at 1.1 for the conductivity and 0.6 for the permittivity to allow easier comparative 
viewing. The maximum conductivity and permittivity values always occurred for the smallest 𝑅𝑅2 and 
strongest weight 𝛼𝛼 = 0. In the case of the pneumothorax, no pathology is evident without the inclusion of 
a prior, but as the influence of the prior increases, even though the prior includes no assumption of 
pathology, the pneumothorax is clearly visible in the reconstructions. However, in both the conductivity 
and permittivity images, a lower conductivity and permittivity region becomes evident in the dorsal right 
lung as well, which is an artifact of the reconstruction, and it becomes stronger as the weighting 

of Mij
int increases (𝛼𝛼 = 0.5 and 0). This artifact is less pronounced in the permittivity images, and is 

arguably not present in the 1.0% added noise case in the permittivity images. The error norms in Table 
II clearly demonstrate that the introduction of the prior decreases the ℓ2 errors for all regions of interest, 
as well as the minimum value in the pneumothorax region. 
 
The presence of the simulated pleural effusion, on the other hand, is clearly evident in the reconstructions 
with the weakest/no prior for both conductivity and permittivity and for both noise levels. The presence of 
the prior improves the spatial resolution of the organs and the region of the effusion, but since the 
regularization results in reconstructed conductivity and permittivity functions that are smooth, there is a 
smooth transition from the healthy ventral portion of the left lung to the effusion, and so the boundary is 
far from being as sharp as in the piecewise constant phantom. In practice, image segmentation is often 
used on reconstructed EIT images, which would likely improve the appearance of the reconstructed images. 
Alternatively, once a pathology is visible, an iterative method could then be invoked as in 22 which segments 
the prior in the region of a possible pathology potentially sharpening the pathology even more. Post-
processing approaches are left for future work. The error norms in Table III show that employing the prior 
greatly decreases the ℓ2 errors for the healthy portions of the phantom and do not have a large effect on 
the pleural effusion region even though the prior assumes the entire left lung has an admittivity (lower 
rather than higher) than the background. 
 
Although the error norms are, on average, higher for reconstructions from the higher noise levels, they are 
reduced by the introduction of the prior. A stronger weighting may be required to achieve an equivalent 
accuracy to the lower noise level. For each given 𝛼𝛼 and 𝑅𝑅2, the algorithm took approximately 35 seconds to 
recover the updated admittivity 𝛾𝛾new . The implementation was not optimized for speed and thus further 
speedup is attainable. 
 
It is clear from all of these images and error norms that this method is highly effective when organ 
boundaries are known with some confidence for improving the reconstructions without any bias of prior 
knowledge of the pathology. The influence of various qualities of prior knowledge of the boundary and 
organ boundaries is left for future work, as are results from experimental data. In practice, this high quality 
knowledge of organ boundaries corresponds to electrodes placed in the same plane as a CT scan slice. This 



can be accomplished with careful use of fiducial markers, and averaging of several slices to account for the 
fact that EIT electrodes are typically much higher than a CT scan slice, resulting in an image that 
corresponds to a much thicker slice. 
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