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Sarah J. Hamilton 
Department of Mathematics, Colorado State University, Fort Collins, CO 
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Abstract: 
Electrical impedance tomography (EIT) is a medical imaging technique in which current is applied 
on electrodes on the surface of the body, the resulting voltage is measured, and an inverse 
problem is solved to recover the conductivity and/or permittivity in the interior. Images are then 
formed from the reconstructed conductivity and permittivity distributions. In the 2-D geometry, EIT 
is clinically useful for chest imaging. In this work, an implementation of a D-bar method for complex 
admittivities on a general 2-D domain is presented. In particular, reconstructions are computed on 
a chest-shaped domain for several realistic phantoms including a simulated pneumothorax, 
hyperinflation, and pleural effusion. The method demonstrates robustness in the presence of noise. 
Reconstructions from trigonometric and pairwise current injection patterns are included. 
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SECTION I. 
Introduction 
Electrical impedance tomography (EIT) is a relatively new imaging technique based on the fact that 
the electrical conductivity and permittivity vary in the different tissues and organs in the body, 
allowing one to form images from the reconstructed conductivity and permittivity distributions. In 
the 2-D geometry, EIT is clinically useful for chest imaging. Conductivity images have been used for 
monitoring pulmonary perfusion [5], [20], [44], determining regional ventilation in the 
lungs [19], [21], [49], detecting extravascular lung water [36], and evaluating shifts in lung fluid in 
congestive heart failure patients [18]. Regional results have been validated with CT 
images [12], [20], [21], [44] and radionuclide scanning [35] in the presence of pathologies such as 
atelectasis, pleural effusion, and pneumothorax. 

In EIT, data is collected on electrodes placed around the perimeter of a patient's chest, and a 
reconstruction algorithm is used to compute the admittivity 𝛾𝛾(𝑥𝑥, 𝑦𝑦) = 𝜎𝜎(𝑥𝑥, 𝑦𝑦) + 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥, 𝑦𝑦) in the 
plane of the electrodes. Here, 𝜎𝜎 is the conductivity of the medium, 𝜖𝜖 is the permittivity, and 𝜔𝜔 is the 
temporal angular frequency of the applied electromagnetic wave. Most data acquisition systems 
and algorithms compute the real part of 𝛾𝛾, that is, the conductivity. However, computing the 
permittivity component provides an additional image that may have clinical usefulness in 
distinguishing between certain conditions such as a pneumothorax and hyperinflation. Both of 
these conditions correspond to a low resistivity region, but the pneumothorax has zero permittivity 
while hyperinflation has low, nonzero permittivity. 
 
If the EIT image depicts changes in admittivity relative to another measured data set, the 
reconstruction is called a difference image. If the image represents an estimate of the actual 
admittivity values at each pixel in the domain of interest, it is called an absolute image. 

Here, we consider a direct reconstruction algorithm developed in [24] that reconstructs a complex 
admittivity without iteration from several integral equations. The algorithm in [24] is the first D-bar 
method for the reconstruction of admittivities in two dimensions. The framework is based on the 
uniqueness proof in [17], but equations relating the Dirichlet-to-Neumann map to the scattering 
transform and the exponentially growing solutions are not present in that work, and are derived 
in [24]. 

Reconstruction algorithms for complex admittivities based on an iterative least-squares approach 
are found in [4], [15], [30] and an iterative package for 3-D reconstructions has been published in [42]. 
Another approach to the inverse problem is that of shape-based reconstruction methods for 
determining the location and shape of inclusions in the plane of the electrodes. Results from such 
methods can be used as priors or constraints in iterative approaches. Level-set methods for shape-
based EIT reconstructions of conductivity include [1], [8], and [14]. The enclosure method was 
introduced in [25] and implemented (independently) in [6] and [26]. See, for example, [3] and [37] for a 
review of reconstruction algorithms for EIT. 
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The work presented here is a direct method that makes use of exponentially growing solutions, or 
complex geometrical optics (CGO) solutions, to the admittivity equation. The steps of the algorithm 
are to compute these CGO solutions from knowledge of the Dirichlet-to-Neumann map, compute a 
scattering transform matrix, solve two systems of 𝜕𝜕¯ (D-bar) equations in the complex frequency 
variable k for the CGO solutions to a related elliptic system, and finally to reconstruct the 
admittivity distribution from the values of these related CGO solutions at 𝑘𝑘 = 0. 
 
In this paper, we extend the implementation to noncircular domains, focusing on technical aspects 
of the implementation not included in [24], and we demonstrate the good spatial resolution and 
accuracy of the algorithm on simulated examples of clinical interest. Absolute images and 
difference images of simulated pleural effusion, pneumothorax, and hyperinflation are presented, 
three conditions for which it would be beneficial to clinicians to be able to image in the ICU. To 
take into account various types of EIT hardware, we consider two types of applied current patterns 
in this work: trigonometric current patterns, in which current is applied simultaneously on all 
electrodes, and adjacent current patterns, in which only one pair of neighboring electrodes is active 
in each data acquisition set. We consider data with several noise levels and demonstrate that the 
algorithm is reasonably robust. 

A theory for full nonlinear reconstructions of permittivities in 3-D by a direct method does not yet 
exist, and while this method is not immediately generalizable to three dimensional reconstructions, 
2-D reconstructions are useful, for instance, for imaging patients in the ICU under mechanical 
ventilation [12]. 

This paper is organized as follows. In Section II we describe the simulation of the data and finite-
dimensional approximation of the Dirichlet-to-Neumann map. In Section III, the direct D-bar 
reconstruction algorithm is briefly described. Details of the implementation are provided 
in Section IV. The absolute images and difference images of simulated pleural effusion, 
pneumothorax, and hyperinflation are found in Section V. 

SECTION II. 

Measurement and Simulation 
The reconstruction algorithm requires knowledge of the Dirichlet-to-Neumann map (DN map), or 
voltage-to-current density map. In this section we describe the map mathematically and explain 
how a finite-dimensional matrix approximation is computed from data simulated by the finite 
element method (FEM). 

The reconstruction of admittivies 𝛾𝛾(𝑥𝑥,𝑦𝑦) = 𝜎𝜎(𝑥𝑥,𝑦𝑦) + 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥, 𝑦𝑦) from electrical boundary 
measurements is known as the inverse admittivity problem. The propagation of electromagnetic 
fields within the body is governed by Maxwell's equations. The application of time-harmonic 
currents and the electromagnetic properties of the human body facilitate reducing the model to the 
generalized Laplace equation 
 

∇ ⋅ (𝛾𝛾(𝑥𝑥, 𝑦𝑦)∇𝑢𝑢(𝑥𝑥,𝑦𝑦)) = 0, (𝑥𝑥, 𝑦𝑦) ∈ Ω (1) 

where 𝛺𝛺 denotes a bounded region in the plane, and u denotes the electric potential. See, for 
example, [27] and [37] for details of this calculation. 



 

 

Applying a known voltage on the boundary of 𝛺𝛺 corresponds to the Dirichlet boundary condition 
 

𝑢𝑢(𝑥𝑥, 𝑦𝑦) = 𝑓𝑓(𝑥𝑥, 𝑦𝑦), (𝑥𝑥,𝑦𝑦) ∈ ∂Ω (2) 

where 𝜕𝜕𝜕𝜕 denotes the boundary of 𝛺𝛺, and knowledge of the resulting current density distribution 
on the boundary gives rise to the Neumann boundary condition 

𝛾𝛾(𝑥𝑥, 𝑦𝑦) ∂𝑢𝑢
∂𝜈𝜈

(𝑥𝑥,𝑦𝑦) = 𝑗𝑗(𝑥𝑥, 𝑦𝑦) (3) 

where ν denotes the outward unit normal to 𝜕𝜕𝜕𝜕. The mapping which takes a given voltage 
distribution on the boundary to the resulting current density distribution on the boundary is 
referred to as the Dirichlet-to-Neumann (DN), or voltage-to-current density, map and is denoted 
by 𝛬𝛬𝛾𝛾. Since the physical interpretation of 𝛬𝛬𝛾𝛾 is knowledge of the resulting current distributions on 
the boundary of 𝛺𝛺 corresponding to all possible voltage distributions on the boundary, it can be 
viewed as our data. In practice, current is applied on the electrodes and the resulting voltage is 
measured. This map, the Neumann-to-Dirichlet (ND) map, is denoted by 𝑅𝑅𝛾𝛾. The DN map is the 
inverse of the ND map. The finite-dimensional matrix approximations to 𝛬𝛬𝛾𝛾 and 𝑅𝑅𝛾𝛾 will be denoted 
by Λ𝛾𝛾𝑀𝑀  and 𝑅𝑅𝛾𝛾𝑀𝑀, respectively. When the admittivity is the constant value of 1 in 𝛺𝛺, the corresponding 
DN map will be denoted by 𝛬𝛬1. We will need the difference of DN maps, Λ𝛾𝛾 − Λ1 in the 
forthcoming formulas, and we will denote this difference by 𝛿𝛿Λ𝛾𝛾 and the finite-dimensional matrix 
approximation to the difference by 𝛿𝛿Λ𝛾𝛾𝑀𝑀. 

We consider two choices of current patterns in our simulations. The first are the trigonometric 
patterns, 1 ≤ ℓ ≤ 𝐿𝐿 
 

𝑇𝑇ℓ
𝑗𝑗 = �

𝐶𝐶cos (𝑗𝑗𝜃𝜃ℓ), 1 ≤ ℓ ≤ 𝐿𝐿, 1 ≤ 𝑗𝑗 ≤ 𝐿𝐿
2

𝐶𝐶sin ((𝐿𝐿
2
− 𝑗𝑗)𝜃𝜃ℓ), 1 ≤ ℓ ≤ 𝐿𝐿, 𝐿𝐿

2
+ 1 ≤ 𝑗𝑗 ≤ 𝐿𝐿 − 1  (4) 

where L denotes the total number of electrodes, 𝜃𝜃ℓ = 2𝜋𝜋ℓ/𝐿𝐿, and 𝑇𝑇ℓ
𝑗𝑗  is the current on the ℓth 

electrode corresponding to the 𝑗𝑗th current pattern. The second is the adjacent current pattern, a 
pairwise activation pattern 

𝑇𝑇ℓ
𝑗𝑗 = �

𝐶𝐶, ℓ = 𝑗𝑗, 𝑗𝑗 = 1, … , 𝐿𝐿 − 1
−𝐶𝐶, ℓ = 𝑗𝑗 + 1, 𝑗𝑗 = 1, … , 𝐿𝐿 − 1
0, otherwise.

 (5) 

Notice that in each case there are 𝐿𝐿 − 1 linearly independent current patterns, and the voltage 
values are “measured” on all L electrodes. 

The Complete Electrode Model (CEM) consists of the PDE (1) and boundary conditions that take 
into account both the shunting effect of the electrodes and the contact impedances between the 
electrodes and tissue. The CEM is well-studied in the EIT literature and the reader is referred 
to [7], [45], [48] for further details on the equations and their implementation into the FEM. Here, 
voltage data on 𝐿𝐿 = 32 electrodes was simulated with the CEM and implemented with the finite 
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element method. The FEM computations were performed on the chest-shaped domain with 
perimeter 900 mm and 32 equispaced electrodes of length 0.029 m placed on the boundary. The 
effective contact impedance was chosen to be 𝑧𝑧 = 10−8Ω-m2 on all electrodes in our simulations. 
The current amplitude was chosen to be 𝐶𝐶 = 2mA. 
 
Where indicated, Gaussian relative noise was added to the simulated voltages as follows. Denote 
the (complex-valued) vector of computed voltages for the 𝑗𝑗th current pattern by 𝑉𝑉𝑗𝑗 , let 𝜂𝜂 denote the 
noise level, and 𝑁𝑁𝑗𝑗  a Gaussian random vector (generated by the randn command in MATLAB) that 

is unique for each current pattern 𝑗𝑗. Denoting the noisy data by 𝑉𝑉
~
𝑗𝑗, we then have 𝑉𝑉

~
𝑗𝑗 = Re(𝑉𝑉

~
𝑗𝑗) +

𝑖𝑖Im(𝑉𝑉
~
𝑗𝑗) where 

Re(𝑉𝑉
~
𝑗𝑗) = Re(𝑉𝑉𝑗𝑗) + 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂|Re(𝑉𝑉𝑗𝑗)|𝑁𝑁𝑗𝑗

Im(𝑉𝑉
~
𝑗𝑗) = Im(𝑉𝑉𝑗𝑗) + 𝜂𝜂𝜂𝜂𝜂𝜂𝜂𝜂|Im(𝑉𝑉𝑗𝑗)|𝑁𝑁𝑗𝑗 .

 

The map Λ𝛾𝛾𝑀𝑀  was then computed as in [28] and [29], which we summarize briefly here. Let Φℓ
𝑗𝑗  denote 

the (ℓ, 𝑗𝑗)th entry of the matrix of applied currents with each column normalized with respect to 
the 𝑙𝑙2-vector norm. That is, Φℓ

𝑗𝑗 = 𝑇𝑇𝑗𝑗/∥ 𝑇𝑇𝑗𝑗 ∥2. Let 𝑣𝑣ℓ
𝑗𝑗 denote the entries of the 𝑗𝑗th voltage vector 

normalized so that 𝑣𝑣ℓ
𝑗𝑗 = 𝑉𝑉ℓ/∥ 𝑇𝑇𝑗𝑗 ∥2. Let |𝑒𝑒ℓ| denote the area of the ℓth electrode. Then Λ𝛾𝛾𝑀𝑀 =

(𝑅𝑅𝛾𝛾𝑀𝑀)−1 where the (𝑚𝑚,𝑛𝑛)th entry of 𝑅𝑅𝛾𝛾𝑀𝑀  is given by 

𝑅𝑅𝛾𝛾𝑀𝑀(𝑚𝑚,𝑛𝑛): = 𝛾𝛾0�
1

|𝑒𝑒ℓ|

𝐿𝐿

ℓ=1

Φℓ
𝑚𝑚𝑣𝑣ℓ𝑛𝑛.     (6) 

 

 

SECTION III. 

Description of the Algorithm 
In the mathematical formulation of the reconstruction algorithm, we require special, nonphysical, 
exponentially growing solutions to (1), which are realized by introducing a nonphysical complex 
frequency parameter k, and extending (1) to the entire plane under the assumption that 𝛾𝛾 is 
constant in a neighborhood of the boundary of 𝛺𝛺. This assumption can be imposed in practice by 
assuming that near the boundary, 𝛾𝛾 is the best constant admittivity 𝛾𝛾0 approximation to the 
measured data. Having found γ0, the admittivity can be scaled by 𝛾𝛾

~
= 𝛾𝛾/𝛾𝛾0 and the DN map can be 

scaled accordingly by Λ𝛾𝛾~ = 𝛾𝛾0Λ𝛾𝛾. With this scaling, 𝛾𝛾 is then recovered at the end by 𝛾𝛾 = 𝛾𝛾0𝛾𝛾
~

. 
See [46] for a treatment of the case of a nonconstant boundary conductivity for the real-valued D-bar 
method. In the remainder of this paper, we will identify a point (𝑥𝑥, 𝑦𝑦) ∈ ℝ2 with the complex 
number 𝑧𝑧 = 𝑥𝑥 + 𝑖𝑖𝑖𝑖, and thus the multiplication 𝑘𝑘𝑘𝑘 denotes complex multiplication 𝑘𝑘𝑘𝑘 = (𝑘𝑘1 +
𝑖𝑖𝑘𝑘2)(𝑥𝑥 + 𝑖𝑖𝑖𝑖). The nonphysical exponentially growing solutions 𝑢𝑢𝑗𝑗 satisfy 
 

∇ ⋅ (𝛾𝛾(𝑧𝑧)∇𝑢𝑢𝑗𝑗(𝑧𝑧, 𝑘𝑘)) = 0, 𝑧𝑧 ∈ Ω,𝑘𝑘 ∈ ℂ, 𝑗𝑗 = 1,2  (7) 
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where 𝑢𝑢1 ∼ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖/(𝑖𝑖𝑖𝑖) and 𝑢𝑢2 ∼ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑧𝑧/(−𝑖𝑖𝑖𝑖) in a sense that is made precise in [24]. The existence of 
such solutions is established in [24] and [50] where boundary integral equations in terms of the DN 
maps are presented. These solutions are the key connection between the CGO solutions and the 
measured data and satisfy the following boundary integral equations for 𝑧𝑧 ∈ ∂Ω: 

𝑢𝑢1(𝑧𝑧,𝑘𝑘) = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖𝑖𝑖
− � 𝐺𝐺𝑘𝑘(𝑧𝑧 − 𝜁𝜁)𝛿𝛿Λ𝛾𝛾𝑢𝑢1(𝜁𝜁,𝑘𝑘)𝑑𝑑𝑑𝑑(𝜁𝜁)

∂Ω

𝑢𝑢2(𝑧𝑧, 𝑘𝑘) = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑧𝑧

−𝑖𝑖𝑖𝑖

−� 𝐺𝐺𝑘𝑘(−𝑧𝑧 + 𝜁𝜁)𝛿𝛿Λ𝛾𝛾𝑢𝑢2(𝜁𝜁,𝑘𝑘)𝑑𝑑𝑑𝑑(𝜁𝜁)
∂Ω

 (8)(9) 

where 𝐺𝐺𝑘𝑘(𝑧𝑧) is a special Green's function for the Laplacian known as the Faddeev Green's 
function [16]. It is defined by 

𝐺𝐺𝑘𝑘(𝑧𝑧): = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖𝑔𝑔𝑘𝑘(𝑧𝑧),−∆𝐺𝐺𝑘𝑘 = 𝛿𝛿 (10) 

where 

𝑔𝑔𝑘𝑘(𝑧𝑧): = 1
(2𝜋𝜋)2

� 𝑒𝑒𝑖𝑖𝑖𝑖⋅𝜉𝜉

𝜉𝜉(𝜉𝜉+2𝑘𝑘)ℝ2
𝑑𝑑𝑑𝑑, (−∆ − 4𝑖𝑖𝑖𝑖 ∂)𝑔𝑔𝑘𝑘 = 𝛿𝛿 (11) 

for 𝑘𝑘 ∈ ℂ ∖ {0}, where 𝑧𝑧 ⋅ 𝜉𝜉 = 𝑥𝑥𝜉𝜉1 + 𝑦𝑦𝜉𝜉2, 𝜉𝜉 = 𝜉𝜉1 + 𝑖𝑖𝜉𝜉2. 

 

A second type of CGO solution is required for the mathematical reconstruction algorithm. These 
solutions were introduced in [17], and involve formulating the problem as an elliptic system. 
Define 𝑄𝑄𝛾𝛾(𝑧𝑧) as a transformation of γ and a matrix operator 𝐷𝐷 by 
 
 

𝑄𝑄𝛾𝛾(𝑧𝑧) = �
0 −1

2
∂𝑧𝑧log𝛾𝛾(𝑧𝑧)

− 1
2
∂𝑧𝑧log𝛾𝛾(𝑧𝑧) 0

�

𝐷𝐷 = �∂z 0
0 ∂𝑧𝑧

� .

    (12) 

 

Defining a vector 𝑣𝑣
→

= (𝑣𝑣1, 𝑣𝑣2)𝑇𝑇 = 𝛾𝛾1/2(∂𝑧𝑧𝑢𝑢,∂𝑧𝑧𝑢𝑢)𝑇𝑇  in terms of the solution 𝑢𝑢 to (1), one sees 

that 𝐷𝐷𝑣𝑣
→
− 𝑄𝑄𝛾𝛾𝑣𝑣

→
= 0. 

Francini shows in [17] that for 𝜔𝜔 sufficiently small, 𝜎𝜎(𝑧𝑧) > 𝜎𝜎0 > 0, and ∥ 𝜎𝜎 ∥𝑊𝑊1,∞(Ω), ∥ 𝜖𝜖 ∥𝑊𝑊1,∞(Ω)≤
𝛽𝛽, there exists a unique 2×2 matrix Ψ(𝑧𝑧,𝑘𝑘) for 𝑘𝑘 ∈ ℂ that is a solution to 
 

�𝐷𝐷 − 𝑄𝑄𝛾𝛾(𝑧𝑧)�Ψ(𝑧𝑧, 𝑘𝑘) = 0 
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with Ψ12,Ψ21 ∼ 0, Ψ11 ∼ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖  and Ψ21 ∼ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑧𝑧 where the asymptotic condition is made precise 

in [17]. The columns of 𝛹𝛹 serve as two such vectors 𝑣𝑣
→

  separately satisfying 

�Ψ11Ψ21
� = 𝛾𝛾1/2 �

∂𝑧𝑧𝑢𝑢1
∂𝑧𝑧𝑢𝑢1

� , �Ψ12Ψ22
� = 𝛾𝛾1/2 �

∂𝑧𝑧𝑢𝑢2
∂z𝑢𝑢2

�. 

The values of 𝑢𝑢1 and 𝑢𝑢2 on ∂Ω are related to the off-diagonal entries of 𝛹𝛹 on ∂Ω through the 
boundary integrals [23] 

Ψ12(𝑧𝑧, 𝑘𝑘) = � 𝑒𝑒𝑖𝑖𝑘𝑘(𝑧𝑧−𝜁𝜁)

4𝜋𝜋(𝑧𝑧−𝜁𝜁)∂Ω
𝛿𝛿Λ𝛾𝛾𝑢𝑢2(𝜁𝜁, 𝑘𝑘)𝑑𝑑𝑑𝑑(𝜁𝜁)

Ψ21(𝑧𝑧,𝑘𝑘) = � [𝑒𝑒
𝑖𝑖𝑖𝑖(𝑧𝑧−𝜁𝜁)

4𝜋𝜋(𝑧𝑧−𝜁𝜁)
]𝛿𝛿Λ𝛾𝛾𝑢𝑢1(𝜁𝜁,𝑘𝑘)𝑑𝑑𝑑𝑑(𝜁𝜁)

∂Ω

.
(14)(15) 

As in other D-bar algorithms, [2], [34] the admittivity can be reconstructed directly from knowledge 
of the CGO solutions. Equation (16) follows directly from formulas in [23], [24] 

𝛾𝛾(𝑧𝑧) = exp�− 2
𝜋𝜋
� 1

𝑧𝑧−𝜁𝜁ℂ

∂𝜁𝜁𝑀𝑀−(𝜁𝜁,0)
𝑀𝑀+(𝜁𝜁,0)

𝑑𝑑𝑑𝑑� (16) 

where 

𝑀𝑀+(𝑧𝑧, 𝑘𝑘) = 𝑀𝑀11(𝑧𝑧, 𝑘𝑘) + 𝑒𝑒−𝑖𝑖(𝑘𝑘𝑘𝑘+𝑘𝑘𝑧𝑧)𝑀𝑀12(𝑧𝑧,𝑘𝑘)
𝑀𝑀−(𝑧𝑧, 𝑘𝑘) = 𝑀𝑀22(𝑧𝑧, 𝑘𝑘) + 𝑒𝑒𝑖𝑖(𝑘𝑘𝑘𝑘+𝑘𝑘𝑧𝑧)𝑀𝑀21(𝑧𝑧, 𝑘𝑘)

 (17)(18) 

and the matrix of CGO solutions 𝑀𝑀(𝑧𝑧,𝑘𝑘) are related to Ψ(𝑧𝑧,𝑘𝑘) via 

𝑀𝑀(𝑧𝑧,𝑘𝑘) = Ψ(𝑧𝑧,𝑘𝑘) �𝑒𝑒
−𝑖𝑖𝑖𝑖𝑖𝑖 0
0 𝑒𝑒𝑖𝑖𝑧𝑧𝑘𝑘

� .  (19) 

The values of the CGO solutions 𝑀𝑀(𝑧𝑧, 0) are found by solving the following D-bar equation, in 
the kvariable, derived in [17] 

∂𝑘𝑘𝑀𝑀(𝑧𝑧, 𝑘𝑘) = 𝑀𝑀(𝑧𝑧, 𝑘𝑘)�𝑒𝑒
𝑖𝑖(𝑘𝑘𝑧𝑧+𝑘𝑘𝑧𝑧) 0

0 𝑒𝑒−𝑖𝑖(𝑘𝑘𝑘𝑘+𝑘𝑘𝑧𝑧)
�𝑆𝑆𝛾𝛾(𝑘𝑘) (20) 

for 𝑀𝑀(𝑧𝑧,𝑘𝑘) and evaluating at 𝑘𝑘 = 0. 𝑆𝑆𝛾𝛾(𝑘𝑘) is called the scattering transform matrix, a matrix with 
diagonal entries of 0 and off-diagonal entries defined by 

𝑆𝑆12(𝑘𝑘) = 𝑖𝑖
𝜋𝜋
�𝑄𝑄12(𝑧𝑧)𝑒𝑒−𝑖𝑖𝑘𝑘𝑧𝑧Ψ22(𝑧𝑧,𝑘𝑘)𝑑𝑑𝑑𝑑(𝑧𝑧)
Ω

𝑆𝑆21(𝑘𝑘) = − 𝑖𝑖
𝜋𝜋
�𝑄𝑄21(𝑧𝑧)𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧Ψ11(𝑧𝑧, 𝑘𝑘)𝑑𝑑𝑑𝑑(𝑧𝑧).
Ω

 (21)(22) 

Integrating (21) and (22) by parts results in formulas for 𝑆𝑆12 and 𝑆𝑆21 in terms of the boundary 
values of 𝛹𝛹 

https://ieeexplore.ieee.org/document/#deqn16
https://ieeexplore.ieee.org/document/#deqn21-22
https://ieeexplore.ieee.org/document/#deqn21-22


 

 

 

𝑆𝑆12(𝑘𝑘) = 𝑖𝑖
2𝜋𝜋
� 𝑒𝑒−𝑖𝑖𝑘𝑘𝑧𝑧Ψ12(𝑧𝑧, 𝑘𝑘)(𝜈𝜈1 + 𝑖𝑖𝜈𝜈2)𝑑𝑑𝑑𝑑(𝑧𝑧
∂Ω

)

𝑆𝑆21(𝑘𝑘) = − 𝑖𝑖
2𝜋𝜋
� 𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧Ψ21(𝑧𝑧, 𝑘𝑘)(𝜈𝜈1 − 𝑖𝑖𝜈𝜈2)𝑑𝑑𝑑𝑑(𝑧𝑧)
∂Ω

 (23)(24) 

illustrating the necessity of only the boundary values of the CGO solutions Ψ12 and Ψ21 rather than 
their solutions in all of ℝ2. 

This completes the set of equations necessary to directly determine γ from Λγ. We clarify these 
steps in Fig.1. 
 

 

Fig. 1. Flowchart describing the algorithm. 

 

https://ieeexplore.ieee.org/mediastore_new/IEEE/content/media/42/6490389/6408256/6408256-fig-1-source-large.gif
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SECTION IV. 

Implementation Details 
The first three steps in the algorithm involve computing integrals over the boundary of the domain. 
When the computation involves the DN map, the boundary is discretized in terms of the centers of 
the 𝐿𝐿 electrodes, since our electrode model assumes the voltages are constant on each electrode. 
We denote the center of the ℓth electrode by 𝑧𝑧ℓ, ℓ = 1, … , 𝐿𝐿. 
 
A. Computation of the CGO Solutions 

The boundary integrals (8) and (9) for 𝑢𝑢1 and 𝑢𝑢2, respectively, on the boundary of the chest-shaped 
domain were computed as follows. The normalized basis functions Φℓ

𝑗𝑗 (4) cannot be used to 
accurately approximate a constant function, and so we modify equations (8) and (9), making use of 
the fact that 𝛿𝛿Λ𝛾𝛾(1/(𝑖𝑖𝑖𝑖)) = 1/(𝑖𝑖𝑖𝑖)𝛿𝛿Λ𝛾𝛾(1) = 0, and write (8) and (9) in the equivalent forms 

for 𝑢𝑢
~
1(𝑧𝑧,𝑘𝑘): = 𝑢𝑢1(𝑧𝑧, 𝑘𝑘) − 1/𝑖𝑖𝑖𝑖, 𝑢𝑢

~
2(𝑧𝑧, 𝑘𝑘): = 𝑢𝑢2(𝑧𝑧, 𝑘𝑘) + 1/𝑖𝑖𝑖𝑖 

 
𝑢𝑢
~
1(𝑧𝑧,𝑘𝑘) = 𝑒𝑒1(𝑧𝑧, 𝑘𝑘)

−� 𝐺𝐺𝑘𝑘(𝑧𝑧 − 𝜁𝜁)𝛿𝛿Λ𝛾𝛾𝑢𝑢
~
1(𝜁𝜁, 𝑘𝑘)𝑑𝑑𝑑𝑑(𝜁𝜁)

∂Ω

𝑢𝑢
~
2(𝑧𝑧, 𝑘𝑘) = 𝑒𝑒2(𝑧𝑧,𝑘𝑘)

−� 𝐺𝐺𝑘𝑘(−𝑧𝑧 + 𝜁𝜁)𝛿𝛿Λ𝛾𝛾𝑢𝑢
~
2(𝜁𝜁,𝑘𝑘)𝑑𝑑𝑑𝑑(𝜁𝜁)

∂Ω

 (25)(26) 

where 𝑒𝑒1(𝑧𝑧,𝑘𝑘): = 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖/𝑖𝑖𝑖𝑖 − 1/𝑖𝑖𝑖𝑖 and 𝑒𝑒2(𝑧𝑧, 𝑘𝑘): = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑧𝑧/−𝑖𝑖𝑖𝑖 + 1/𝑖𝑖𝑖𝑖. 

 

Equations (25) and (26) were solved for 𝑘𝑘 values on a disk |𝑘𝑘| ≤ 𝑅𝑅 independently for each 𝑘𝑘 as 
follows (note that this step can be performed in parallel). The functions 𝑢𝑢

~
1(𝑧𝑧, 𝑘𝑘), 𝑢𝑢

~
2(𝑧𝑧, 𝑘𝑘), 𝑒𝑒1(𝑧𝑧, 𝑘𝑘) 

and 𝑒𝑒2(𝑧𝑧, 𝑘𝑘) restricted to the boundary were expanded in the normalized basis functions Φℓ
𝑗𝑗 and 

evaluated at the boundary points 𝑧𝑧ℓ 
 

𝑢𝑢
~
1(𝑧𝑧ℓ,𝑘𝑘) ≈ � 𝑏𝑏𝑗𝑗1(𝑘𝑘)Φℓ

𝑗𝑗
𝐿𝐿−1

𝑗𝑗=1

𝑢𝑢
~
2(𝑧𝑧ℓ,𝑘𝑘) ≈ � 𝑏𝑏𝑗𝑗2(𝑘𝑘)Φℓ

𝑗𝑗
𝐿𝐿−1

𝑗𝑗=1

𝑒𝑒ℓ1(𝑘𝑘) = � 𝑐𝑐𝑗𝑗1(𝑘𝑘)Φℓ
𝑗𝑗

𝐿𝐿−1

𝑗𝑗=1

𝑒𝑒ℓ2(𝑘𝑘) = � 𝑐𝑐𝑗𝑗2(𝑘𝑘)Φℓ
𝑗𝑗 .

𝐿𝐿−1

𝑗𝑗=1

  (27)(28) 

Let 𝐛𝐛𝟏𝟏(𝑘𝑘) denote the column vector 𝐛𝐛𝟏𝟏(𝑘𝑘) = [𝑏𝑏11(𝑘𝑘), … ,𝑏𝑏𝐿𝐿−11 (𝑘𝑘)]𝑇𝑇, and 
define 𝐛𝐛𝟐𝟐(𝑘𝑘), 𝐜𝐜𝟏𝟏(𝑘𝑘) and 𝐜𝐜𝟐𝟐(𝑘𝑘) analogously. 

https://ieeexplore.ieee.org/document/#deqn8-9
https://ieeexplore.ieee.org/document/#deqn8-9
https://ieeexplore.ieee.org/document/#deqn4
https://ieeexplore.ieee.org/document/#deqn8-9
https://ieeexplore.ieee.org/document/#deqn8-9
https://ieeexplore.ieee.org/document/#deqn8-9
https://ieeexplore.ieee.org/document/#deqn8-9
https://ieeexplore.ieee.org/document/#deqn25-26
https://ieeexplore.ieee.org/document/#deqn25-26


 

 

Let 𝐸𝐸ℓ′  denote the ℓ′th subdivision of the boundary (ℓ′ = 1, … , 𝐿𝐿) centered at 𝑧𝑧ℓ′  with length 𝑃𝑃/𝐿𝐿, 
where 𝑃𝑃 denotes the perimeter of the domain. Splitting the integral over ∂Ω into a sum of integrals 
over the subsections 𝐸𝐸ℓ′ 
 

𝑢𝑢
~
1(𝑧𝑧ℓ,𝑘𝑘) ≈ 𝑒𝑒1(𝑧𝑧ℓ, 𝑘𝑘)

−�� 𝐺𝐺𝑘𝑘(𝑧𝑧ℓ − 𝜁𝜁)𝛿𝛿Λ𝛾𝛾𝑀𝑀𝑢𝑢
~
1(⋅, 𝑘𝑘)|𝜁𝜁ℓ′𝑑𝑑𝑑𝑑(𝜁𝜁)

𝐸𝐸ℓ′

𝐿𝐿

ℓ′=1
= 𝑒𝑒1(𝑧𝑧ℓ, 𝑘𝑘)

−�� 𝐺𝐺𝑘𝑘(𝑧𝑧ℓ − 𝜁𝜁)𝑑𝑑𝑑𝑑(𝜁𝜁)[𝛿𝛿Λ𝛾𝛾𝑀𝑀𝑢𝑢
~
1(𝜁𝜁ℓ′ , 𝑘𝑘)].

𝐸𝐸ℓ′

𝐿𝐿

ℓ′=1

 

Using the expansions for 𝑢𝑢
~
1 and 𝑒𝑒1, (27) and (28), respectively, we have 

�𝑏𝑏𝑗𝑗1(𝑘𝑘)Φℓ
𝑗𝑗

𝐿𝐿−1

𝑗𝑗=1

≈ �𝑐𝑐𝑗𝑗1(𝑘𝑘)Φℓ
𝑗𝑗

𝐿𝐿−1

𝑗𝑗=1

−�� 𝐺𝐺𝑘𝑘(𝑧𝑧ℓ − 𝜁𝜁)𝑑𝑑𝑑𝑑(𝜁𝜁) �𝛿𝛿Λ𝛾𝛾𝑀𝑀�𝑏𝑏𝑗𝑗1(𝑘𝑘)Φℓ′
𝑗𝑗

𝐿𝐿−1

𝑗𝑗=1

�

𝐸𝐸ℓ′

𝐿𝐿

ℓ′=1

= �𝑐𝑐𝑗𝑗1(𝑘𝑘)Φℓ
𝑗𝑗

𝐿𝐿−1

𝑗𝑗=1

−�� 𝐺𝐺𝑘𝑘(𝑧𝑧ℓ − 𝜁𝜁)𝑑𝑑𝑑𝑑(𝜁𝜁)�𝑏𝑏𝑗𝑗1(𝑘𝑘)𝑓𝑓𝑗𝑗(𝜁𝜁ℓ′)
𝐿𝐿−1

𝑗𝑗=1𝐸𝐸ℓ′

𝐿𝐿

ℓ′=1

 

where 𝑓𝑓𝑗𝑗(𝜁𝜁ℓ′) denotes the action of the discretized 𝛿𝛿Λ𝛾𝛾𝑀𝑀  matrix on the 𝑗𝑗th normalized basis function 
evaluated at 𝜁𝜁ℓ′. Define 

𝐆𝐆
~
𝑘𝑘(ℓ, ℓ′) = �

𝐺𝐺𝑘𝑘(𝑧𝑧ℓ, 𝜁𝜁ℓ′) ℓ ≠ ℓ′
𝐿𝐿
𝑃𝑃 ∫ 𝐺𝐺𝑘𝑘(𝑧𝑧ℓ − 𝜁𝜁)𝑑𝑑𝑑𝑑(𝜁𝜁)𝐸𝐸ℓ′

ℓ = ℓ′ (29) 

then 

https://ieeexplore.ieee.org/document/#deqn27-28
https://ieeexplore.ieee.org/document/#deqn27-28


 

 

� 𝑏𝑏𝑗𝑗1(𝑘𝑘)Φℓ
𝑗𝑗

𝐿𝐿−1

𝑗𝑗=1
≈� 𝑐𝑐𝑗𝑗1(𝑘𝑘)Φℓ

𝑗𝑗
𝐿𝐿−1

𝑗𝑗=1

                                                                              −𝑃𝑃
𝐿𝐿
� 𝑏𝑏𝑗𝑗1(𝑘𝑘)

𝐿𝐿−1

𝑗𝑗=1
� 𝐆𝐆

~
𝑘𝑘(ℓ, ℓ′)𝑓𝑓𝑗𝑗(𝜁𝜁ℓ′)

𝐿𝐿

ℓ′=1
.
(30) 

Following [13] 

𝑓𝑓𝑝𝑝(𝜁𝜁ℓ′) ≈ (Φ𝛿𝛿Λ𝛾𝛾𝑀𝑀)(ℓ′, 𝑗𝑗) (31) 

i.e., the (ℓ′, )th entry in the matrix resulting from multiplication of the normalized current pattern 
matrix 𝛷𝛷 and the discretized difference in DN maps 𝛿𝛿Λ𝛾𝛾𝑀𝑀. Using the properties of matrix 
multiplication, (30) can be rewritten as 

�𝑏𝑏𝑗𝑗1(𝑘𝑘)Φℓ
𝑗𝑗

𝐿𝐿−1

𝑗𝑗=1

= �𝑐𝑐𝑗𝑗1(𝑘𝑘)Φℓ
𝑗𝑗

𝐿𝐿−1

𝑗𝑗=1

                                                           −
𝑃𝑃
𝐿𝐿
�𝑏𝑏𝑗𝑗1(𝑘𝑘)(𝐆𝐆

~
𝑘𝑘Φ𝛿𝛿Λ𝛾𝛾𝑀𝑀)(ℓ, 𝑗𝑗)

𝐿𝐿−1

𝑗𝑗=1

 

 

or equivalently 

Φ𝐛𝐛𝟏𝟏 = Φ𝐜𝐜𝟏𝟏 −
𝑃𝑃
𝐿𝐿
𝐆𝐆
~
𝑘𝑘Φ𝛿𝛿Λ𝛾𝛾𝑀𝑀𝐛𝐛𝟏𝟏 

a matrix equation for the unknown coefficients 𝐛𝐛𝟏𝟏 which are needed in the expansion of 𝑢𝑢
~
1 = 𝑢𝑢1 −

1/𝑖𝑖𝑖𝑖. 

Using the orthonormality of 𝛷𝛷, we multiply both sides of the equation by Φ𝑇𝑇, and solve 
 

(𝐼𝐼 + 𝐴𝐴)𝐛𝐛𝟏𝟏 = 𝐜𝐜𝟏𝟏 

where 

𝐴𝐴 = 𝑃𝑃
𝐿𝐿
Φ𝑇𝑇𝐆𝐆

~
𝑘𝑘Φ𝛿𝛿Λ𝛾𝛾𝑀𝑀 .  (33) 

For each value of 𝑘𝑘 ∈ ℂ ∖ {0}, we solve the system (32) using GMRES for the unknown 
coefficients 𝐛𝐛𝟏𝟏 and then reconstruct 𝑢𝑢1 − 1/𝑖𝑖𝑖𝑖 for the specified value of k via (27). 

Numerical experimentation has shown that the standard Green's function for the Laplacian 

𝐺𝐺0(𝑧𝑧 − 𝜁𝜁): = − 1
2𝜋𝜋

log |𝑧𝑧 − 𝜁𝜁| (34) 

is a good approximation to 𝐺𝐺𝑘𝑘(𝑧𝑧 − 𝜁𝜁) [13], [39]. However, in [13], the singularity that occurs at 𝜁𝜁 = 𝑧𝑧ℓ 
in G0 is dealt with by setting the value to zero. Here, we will instead use the more precise 

https://ieeexplore.ieee.org/document/#deqn30
https://ieeexplore.ieee.org/document/#deqn32
https://ieeexplore.ieee.org/document/#deqn27-28


 

 

calculation (29), replacing 𝐺𝐺𝑘𝑘 by 𝐺𝐺0, and calculate the integrable singularity numerically using 
Simpson's rule over the non-circular boundary ∂Ω. For each subdivision 𝐸𝐸ℓ, of the boundary 

�𝐺𝐺0(𝑧𝑧ℓ − 𝜁𝜁)𝑑𝑑𝑑𝑑(𝜁𝜁) ≈ −
1

2𝜋𝜋
� log |𝑧𝑧ℓ − 𝜁𝜁𝑝𝑝|
𝑃𝑃𝑧𝑧

𝑝𝑝=1
𝐸𝐸ℓ

 

where 𝜁𝜁𝑝𝑝, 𝑝𝑝 = 1, … ,𝑃𝑃𝑧𝑧, are points on 𝐸𝐸ℓ such that no 𝜁𝜁𝑝𝑝 coincides with 𝑧𝑧ℓ. 

Note that the boundary integral (9) for 𝑢𝑢2 requires 𝐺𝐺0(−𝑧𝑧 + 𝜁𝜁) instead of 𝐺𝐺0(𝑧𝑧 − 𝜁𝜁). Due to the 
definition of 𝐺𝐺0 in (34), we have the relationship 
 

𝐺𝐺0(𝑧𝑧 − 𝜁𝜁): = −
1

2𝜋𝜋
log |𝑧𝑧 − 𝜁𝜁| = 𝐺𝐺0(−𝑧𝑧 + 𝜁𝜁). 

Therefore, in an analogous fashion, the unknown coefficients 𝐛𝐛𝟐𝟐 for 𝑢𝑢
~
2 (using 𝐺𝐺0) may be found via 

(𝐼𝐼 + 𝐴𝐴)𝐛𝐛𝟐𝟐 = 𝐜𝐜𝟐𝟐 

where A is the same matrix defined above in (33), and 𝑢𝑢
~
2 = 𝑢𝑢2 + 1/𝑖𝑖𝑖𝑖 may be subsequently 

reconstructed via (27). 

B. Computation of Ψ12 and Ψ21 
To compute Ψ12(𝑧𝑧, 𝑘𝑘) and Ψ21(𝑧𝑧,𝑘𝑘) for 𝑧𝑧 on the boundary and |𝑘𝑘| ≤ 𝑅𝑅 from (14) and (15), only the 
coefficients in the expansions of 𝑢𝑢

~
1(𝑧𝑧, 𝑘𝑘) and 𝑢𝑢

~
2(𝑧𝑧,𝑘𝑘) are needed. The ∂𝑧𝑧 derivative of 𝐺𝐺𝑘𝑘(−𝑧𝑧 + 𝜁𝜁) 

and ∂z derivative of 𝐺𝐺𝑘𝑘(𝑧𝑧 − 𝜁𝜁) are approximated by ∂𝑧𝑧𝐺𝐺𝑘𝑘(−𝑧𝑧𝑛𝑛 + 𝜁𝜁ℓ′) ≈ Γ(𝑛𝑛, ℓ′) where 

Γ(𝑛𝑛, ℓ′) ≡ {
𝑒𝑒𝑖𝑖𝑘𝑘(𝑧𝑧𝑛𝑛−𝜁𝜁ℓ′)

4𝜋𝜋(𝑧𝑧𝑛𝑛−𝜁𝜁ℓ′)
,  if arg (𝑧𝑧𝑛𝑛 − 𝜁𝜁ℓ′) ≥ tol

0,  otherwise
 (36) 

and ∂¯zGk(zn−ζℓ′)≈Γ~(n,ℓ′) where 

Γ
~

(𝑛𝑛, ℓ′) ≡ {[𝑒𝑒
𝑖𝑖𝑖𝑖(𝑧𝑧𝑛𝑛−𝜁𝜁ℓ′)

4𝜋𝜋(𝑧𝑧𝑛𝑛−𝜁𝜁ℓ′)
],  if arg (𝑧𝑧𝑛𝑛 − 𝜁𝜁ℓ′) ≥ tol

0,  otherwise
 (37) 

respectively for ℓ′ = 1, … , 𝐿𝐿 and 𝑛𝑛 = 1, … ,𝑁𝑁𝑧𝑧 where 𝑁𝑁𝑧𝑧 is the number of evaluation points along 
the boundary. Note that 𝑁𝑁𝑧𝑧 need not coincide with 𝐿𝐿. Now the vectors of CGO solutions Ψ12 
and Ψ21 evaluated at 𝑁𝑁𝑧𝑧 points on the boundary can be approximated by 

Ψ12(𝑘𝑘) ≈ 𝑃𝑃
𝑁𝑁𝑧𝑧
ΓΦ𝛿𝛿Λ𝛾𝛾𝑀𝑀𝐛𝐛𝟐𝟐

Ψ21(𝑘𝑘) ≈ 𝑃𝑃
𝑁𝑁𝑧𝑧
Γ
~
Φ𝛿𝛿Λ𝛾𝛾𝑀𝑀𝐛𝐛𝟏𝟏.

 (38)(39) 
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C. Computation of the Scattering Transforms 

The formulas for the scattering transform 𝑆𝑆12(𝑘𝑘) and 𝑆𝑆21(𝑘𝑘), (23) and (24) respectively, require 
knowledge of the outward facing unit normal vector 𝜈𝜈 = (𝜈𝜈1, 𝜈𝜈2) = 𝜈𝜈1 + 𝑖𝑖𝜈𝜈2 and its complex 
conjugate 𝜈𝜈, respectively 
 

𝑆𝑆12(𝑘𝑘) =
𝑖𝑖

2𝜋𝜋
� 𝑒𝑒−𝑖𝑖𝑘𝑘𝑧𝑧Ψ12(𝑧𝑧, 𝑘𝑘)(𝜈𝜈1 + 𝑖𝑖𝜈𝜈2)𝑑𝑑𝑑𝑑(𝑧𝑧)
∂Ω

𝑆𝑆21(𝑘𝑘) = −
𝑖𝑖

2𝜋𝜋
� 𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧Ψ21(𝑧𝑧, 𝑘𝑘)(𝜈𝜈1 − 𝑖𝑖𝜈𝜈2)𝑑𝑑𝑑𝑑(𝑧𝑧)
∂Ω

 

for each evaluation point 𝑧𝑧 along the boundary. When the boundary is a circle of radius 𝑟𝑟, 𝜈𝜈 can be 
described by the coordinate 𝑧𝑧 on ∂Ω divided by its magnitude (i.e., 𝑧𝑧/|𝑧𝑧|). However, when the 
boundary is noncircular, as in the case with the chest-shaped domain used here, we must 
approximate 𝜈𝜈 using a parameterization 𝑟𝑟(𝜃𝜃) of the boundary for 𝜃𝜃 ∈ [0,2𝜋𝜋). 

Previous methods [40], [41] have transformed the problem to the unit disc by scaling the DN map by 
the maximum radial value of the noncircular domain and have produced good reconstructions. 
Here, as in [23], we seek to improve the reconstructions by a more accurate modeling of the 
boundary of the domain and thus do not scale the DN map by any radial component. 

The unit outward normal vector at a point 𝑧𝑧0 = 𝑥𝑥0 + 𝑖𝑖𝑦𝑦0 on the boundary was approximated by 
setting 𝜈𝜈(𝑧𝑧0) equal to the outward facing vector orthogonal to the unit tangent vector 𝜏𝜏(𝑧𝑧0) to the 
boundary pointing in the counter-clockwise orientation in 𝜃𝜃. This tangent vector was approximated 
by taking a forward difference with a second point 𝑧𝑧+ on ∂Ω a small distance away from 𝑧𝑧0 in the 
counter-clockwise direction 
 

𝜏𝜏(𝑧𝑧0) ≈
(𝑥𝑥+ − 𝑥𝑥0) + 𝑖𝑖(𝑦𝑦+ − 𝑦𝑦0)

�(𝑥𝑥+ − 𝑥𝑥0)2 + (𝑦𝑦+ − 𝑦𝑦0)2
 

and therefore 

𝜈𝜈(𝑧𝑧0) ≡ 𝜏𝜏2(𝑧𝑧0) − 𝑖𝑖𝜏𝜏1(𝑧𝑧0). 

When evaluating the scattering transforms 𝑆𝑆12(𝑘𝑘) and 𝑆𝑆21(𝑘𝑘) numerically, we approximate the 
integral by a finite sum using a Simpson's rule as follows: 
 

𝑆𝑆12(𝑘𝑘) ≈ 𝑖𝑖
2𝜋𝜋

𝑃𝑃
𝑁𝑁𝑧𝑧
� 𝑒𝑒−𝑖𝑖𝑘𝑘𝑧𝑧𝑛𝑛Ψ12(𝑧𝑧𝑛𝑛, 𝑘𝑘)𝜈𝜈𝑛𝑛

𝑁𝑁𝑧𝑧

𝑛𝑛=1

𝑆𝑆21(𝑘𝑘) ≈ − 𝑖𝑖
2𝜋𝜋

𝑃𝑃
𝑁𝑁𝑧𝑧
� 𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧𝑛𝑛Ψ21(𝑧𝑧𝑛𝑛, 𝑘𝑘)𝜈𝜈𝑛𝑛

𝑁𝑁𝑧𝑧

𝑛𝑛=1

 (40)(41) 

and use bilinear interpolation to compute 𝑆𝑆12(0) and 𝑆𝑆21(0). The scattering transform is computed 
for |𝑘𝑘| ≤ 𝑅𝑅 and further restricted in the case of noisy data, which results in blow-up of the 
scattering transform. This truncation has been rigorously proven to be tantamount to a nonlinear 
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regularization for the D-bar method for real-valued conductivities [34], and it has the same 
regularizing behavior for this method. 

 

D. Solution of the System of D-Bar Equations 

The solution to the matrix ∂𝑘𝑘 (20) can be written as two systems as follows: 
 

�
1 = 𝑀𝑀11(𝑧𝑧, 𝑘𝑘) − 1

𝜋𝜋𝜋𝜋
∗ (𝑀𝑀12(𝑧𝑧, 𝑘𝑘)𝑒𝑒(𝑧𝑧,−𝑘𝑘)𝑆𝑆21(𝑘𝑘))

0 = 𝑀𝑀12(𝑧𝑧, 𝑘𝑘) − 1
𝜋𝜋𝜋𝜋
∗ (𝑀𝑀11(𝑧𝑧, 𝑘𝑘)𝑒𝑒(𝑧𝑧, 𝑘𝑘)𝑆𝑆12(𝑘𝑘))

 (42) 

and 

�
1 = 𝑀𝑀22(𝑧𝑧,𝑘𝑘) − 1

𝜋𝜋𝜋𝜋
∗ (𝑀𝑀21(𝑧𝑧, 𝑘𝑘)𝑒𝑒(𝑧𝑧, 𝑘𝑘)𝑆𝑆12(𝑘𝑘))

0 = 𝑀𝑀21(𝑧𝑧,𝑘𝑘) − 1
𝜋𝜋𝜋𝜋
∗ (𝑀𝑀22(𝑧𝑧, 𝑘𝑘)𝑒𝑒(𝑧𝑧,−𝑘𝑘)𝑆𝑆21(𝑘𝑘))

 (43) 

where 𝑒𝑒(𝑧𝑧, 𝑘𝑘) = 𝑒𝑒𝑖𝑖(𝑧𝑧𝑧𝑧+𝑧𝑧𝑘𝑘). 

The numerical solver developed in [31] for the inverse conductivity problem for equations of the 
form 

∂𝑘𝑘𝑣𝑣(𝑘𝑘) = 𝑇𝑇(𝑘𝑘)𝑣𝑣(𝑘𝑘) 

was adapted to solve systems of equations and to take into account the difference that here the 
unknowns 𝑀𝑀(𝑧𝑧,𝑘𝑘) are not conjugated, but instead the argument k is conjugated. The solver is 
based on the fast method by Vainikko [47] that uses FFT's for solving integral equations with 
weakly singular kernels. Here, we use a one-grid version of that method. The implementation for 
this problem is described in [24]. Note that (42) and (43) are solved for |𝑘𝑘| ≤ 𝑅𝑅. 

 

Fig. 2. Baseline phantom. Admittivity values are in S/m. 
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The convolution 1/𝜋𝜋𝜋𝜋 ∗ 𝑓𝑓(𝑘𝑘) is implemented with FFT's on a uniform k-grid of size (2𝑁𝑁 +
1) × (2𝑁𝑁 + 1) with uniform step size ℎ𝜅𝜅 by computing 

1
𝜋𝜋𝜋𝜋

∗ 𝑓𝑓(𝑘𝑘) = ℎ𝜅𝜅2IFFT(FFT(
1
𝜋𝜋𝑘𝑘

)FFT(𝑓𝑓(𝑘𝑘))). 

A matrix-free solution of the resulting system for each value of 𝑧𝑧 was accomplished using GMRES. 
This step of the method can be implemented in parallel for each 𝑧𝑧 in the chosen mesh of 𝛺𝛺 and one 
only needs to store 𝑀𝑀(𝑧𝑧, 0). 

 

E. Computation of the Admittivity 

The admittivity is computed by solving (16) numerically. The 
functions 𝑀𝑀+ and 𝑀𝑀− in (17) and (18) were evaluated using the entries of 𝑀𝑀(𝑧𝑧, 0) recovered when 
solving the ∂𝑘𝑘 equation as above. Centered finite differences with a uniform step size of ℎ𝑧𝑧 ≈
0.0031 were used to evaluate the ∂𝑧𝑧  and ∂𝑧𝑧 derivatives of 𝑀𝑀+ and 𝑀𝑀−, respectively. The 
convolution was then computed using FFT's as above 

𝛾𝛾(𝑧𝑧)

 
 

               = exp (−2ℎ𝑧𝑧2IFFT(FFT(
1
𝜋𝜋𝜋𝜋

)FFT(
∂𝑧𝑧𝑀𝑀−(𝑧𝑧, 0)
𝑀𝑀+(𝑧𝑧, 0)

))).
 

 

SECTION V. 

Results and Discussion 
The test problems were constructed to be simple simulations of organs and situations of interest in 
EIT thoracic imaging. Reconstructions were computed on a z-mesh of 128×128 elements with zero-
mean Gaussisan random noise added to the voltage data at 0%, 0.01%, 0.05%, and 0.1% of the 
maximum voltage for that data set, as described in Section II. Each EIT system has its own noise 
level associated with it, and some are published, some are not. As an example, the ACT3 system has 
phase sensitive voltmeters with a published resolution of 1 part in 216 (16 bits) for both the real and 
quadrature voltage components, which is equivalent to an SNR of 104 dB [9], [10]. This 
corresponds to less than 0.01% error in the voltage measurements. The system has a 1 in 12 bit 
voltmeter resolution for faster data acquision, which corresponds to a voltmeter precision of 
0.024%. Another test described in [10] performed on each channel reports an absolute accuracy of 
99.5%. 
 
In the noise-free case, the CGO solutions and scattering transform were computed on a disk of 
radius 𝑅𝑅 = 40 in the 𝑘𝑘-plane. In the presence of noise, an additional nonuniform truncation 
approach was used to remove artificial blowups in the scattering data resulting from the noisy data. 
In each case, if the magnitude of either the real or imaginary parts of the scattering data 𝑆𝑆(𝑘𝑘) 
exceeded a certain empirically determined threshold, the value was set to zero. In general, the 
maximal admissible |𝑘𝑘| became smaller as the noise level increased. We include the results from 
the best choice of admissible 𝑘𝑘 here and do not include a thorough study of the effects of 
various R in the scope of this paper but point out that the choices of 𝑅𝑅 and such empirical 
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thresholds are very intuitive when looking at plots of the scattering data (see [23] for such 
pictures). 

 

Fig. 3. Reconstructions of the baseline phantom using trigonometric and adjacent current patterns. Plots of 
the real and imaginary parts of the reconstruction are displayed on the same scale, respectively. 

 

Table I Table Indicates Maximum Value of the Admittivity in the Heart Region and the Minimum Values of the 
Admittivity in the Lung Region in the Reconstructions for the Baseline Phantom with Trigonometric Current 
Patterns (TP) and Adjacent Current Patterns (AP). Actual Values are Provided for the Test Problem for 
Comparison. Dynamic Ranges for the Conductivity Images are Indicated by 𝜎𝜎 and for Permittivity by 𝜖𝜖 

 

Fig. 4. The pleural effusion phantom. Admittivity values are in S/m. 

 



 

 

A. Baseline Data Set 

The first example we consider is an idealized chest phantom with heart and lungs (see Fig. 2). The 
admittivity of the background was chosen to be 0.8 + 0.4𝑖𝑖S/m, representing a rough average value 
of the low conductivity and permittivity components of bone and fat in a chest and the high 
conductivity and permittivity values of muscle. The admittivity of the heart was 1.1 + 0.6𝑖𝑖S/m, and 
the admittivity of the lung was 0.5 + 0.2𝑖𝑖S/m. Note that this example serves as a good baseline for 
the examples that follow that include additional inclusions or inhomogeneities. 
Reconstructions of the baseline chest phantom from trigonometric and adjacent current patterns 
are found in Fig. 3. Recall from Section II that the current amplitude is 𝐶𝐶 = 2mA and the effective 
contact impedance is 𝑧𝑧 = 10−8Ω/m2. The reconstructions show excellent spatial resolution of the 
heart and lungs from noise-free data with a dynamic range of 76% for the conductivity and 80% 
 

 
 
Table II Table Indicates the Maximum Value of the Admittivity in the Heart Region and in the Pleural Effusion 
Region and the Minimum Values of the Admittivity in the Lung Region in the Reconstructions for the Pleural 
Effusion Phantom with Trigonometric Current Patterns (TP) and Adjacent Current Patterns (AP). Actual Values 
are Provided for the Test Problem for Comparison. Dynamic Ranges for the Conductivity Images are Indicated 
by 𝜎𝜎 and for Permittivity by 𝜖𝜖 

 

Fig. 5. Reconstructions of the pleural effusion phantom using trigonometric and adjacent current patterns. 
Plots of the real and imaginary parts of the reconstruction are displayed on the same scale, respectively. 



 

 

 

Fig. 6. Difference images produced by subtracting the baseline reconstructions in Fig. 3 from the pleural 
effusion reconstructions in Fig. 5. The real and imaginary parts are on the same respective scales. Note that 
the particular noise distribution is unique to each reconstruction, so subtraction does not remove these 
effects. 

 

for the permittivity. The maximum value of the conductivity/permittivity was found in the heart 
region for all noise levels and correspondingly the minimum was found in the lung region. These 
values and values of the dynamic range are found in Table I for all noise levels for reconstructions 
from both sets of current patterns. With increasing noise level, there is an increasing distortion in 
the shape of the organ boundaries, and the heart appears elongated and pulled toward the center, 
particularly in the permittivity images from the adjacent current patterns. 

B. Simulation of Pleural Effusion 

A pleural effusion is a condition in which there is an excess of fluid in the pleural space, the area 
between the lung and chest cavity wall which naturally contains a small amount of lubricating fluid 
and layers of tissue. Pulmonary edema is characterized by fluid accumulation in the interstitial 
space of the lung, which may progress to accumulate in the alveoli in severe cases. The idealized 
numerical phantom presented here could serve as a model for either pleural effusion or focal 
edema in which the edema is not present throughout the entire lung. We will refer to this example 
as a pleual effusion for simplicity. The pleural effusion was simulated by adding a region of high 
conductivity, high permittivity in the left lung (see Fig. 4 and note that the subject's left lung 
appears on the right in the image), with conductivity and permittivity chosen to match that of the 
heart for simplicity, since this roughly simulates the electrical properties of blood. The dynamic 
ranges and the maximum and minimum reconstructed values for the heart, lungs, and fluid are 
shown Table II for the trigonometric and adjacent current patterns for the four noise levels 
considered here. In general, there is a decrease in dynamic range as the noise level increases. As is 
evident from the values in the table, and from the reconstructions in Fig. 5, the values in the fluid-
filled region decrease with increasing noise, particularly for the adjacent current patterns. In 
general, however, the images are fairly robust with respect to noise, and the presence of an 
imhomogeneity is clearly visible in all images. As in the baseline image, there is some distortion of 



 

 

the organs and the inhomogeneity with increasing noise level, and the heart is elongated, but is not 
pushed to the center as it was in the baseline images. Fig. 6 shows a difference image produced by 
subtracting the baseline reconstructions in Fig. 3 from the pleural effusion reconstructions 
in Fig. 5. The fluid-filled region is visible for all noise levels, and the spatial position is quite 
accurate for the lowest three levels. The contrast values diminish slightly with increasing noise 
level. The absolute images are arguably better than the difference images since the difference 
images contain artifacts due to organ distortion in the reconstructions. We remark that a new noise 
distribution was used in each reconstruction, so the effects of noise are not subtracted out in the 
difference images. This may be slightly contrary to the experimental case in which to some extent 
noise and electrode effects are subtracted out in difference images. 

C. Simulations of Hyperinflation and Pneumothorax 

 

Table III Table Indicates the Maximum Value of the Admittivity in the Heart Region and the MinimumValues 
of the Admittivity in the Lung and in the Hyperinflation Region in the Reconstructions for the Hyperinflation 
Phantom with Trigonometric Current Patterns (TP) and Adjacent Current Patterns (AP). The Dynamic Ranges 
for the Conductivity Images are Indicated by 𝜎𝜎 and for Permittivity by 𝜖𝜖 

 

Fig. 7. Phantom for hyperinflation (H) and pneumothorax (P). Admittivity values are in S/m. 

 

Hyperinflation in the left lung was simulated by adding a region of low conductivity and low 
permittivity to model the lower density of lung tissue in the left lung to the baseline phantom. A 
pneumothorax in the left lung was simulated by adding a region of low conductivity and zero 
permittivity in the left lung to the baseline phantom. The numerical phantoms for hyperinflation 
and pneumothorax are found in Fig. 7. The phantoms differ from each other only in the 
permittivity values in the hyperinflation/pneumothorax lung region. 



 

 

The maximum and minimum values for the heart, lungs, and region of hyperinflation are shown 
in Table III for the trigonometric and adjacent current patterns. While there is little to no drop in 
the reconstructed values in this region, the reconstructions, found in Fig. 8 do show an enlarged 
left lung, particularly in permittivity images. To further study the reconstruction of this 
region, Fig.9shows a difference image produced by subtracting the baseline reconstructions 
in Fig. 3 from those for hyperinflation in Fig. 8. It is clear from the difference images, particularly 
in the noise-free case, that a region more resistive and with lower permittivity than the background 
is present near the left lung. However, other differences between the hyperinflation reconstruction 
and baseline are equally prominent in the difference image, and so identifying such a region from 
the difference image may also be inconclusive. However, the noise-free case and the absolute 
images show that the small difference in organ shape and conductivity values in the phantom does 
correspond to a reconstructable image by this method, and the method used here of modeling 
noise, namely, a unique noise distribution for each data set, does not perfectly correspond to an 
experimental situation, where the noise has a random component as well as a system-related 
component that does not change with each data set for a given experimental set-up. All data sets, 
including noise-free data, do contain contact impedance, modeled in the same way in each 
simulation. 

The corresponding table of maximum and minimum values for the pneumothorax are shown 
in Table IV, and the absolute images are found in Fig. 10. The reconstructions again show an 
enlarged left lung, with good organ shape resolution and overall reconstructed conductivity values, 
but with no drop in the conductivity in the pneumothorax region. The difference images, found 
in Fig. 11, are comparable to those of hyperinflation. Finally, images formed by subtracting the 
hyperinflation reconstructions in Fig. 8 from the pneumothorax reconstructions in Fig. 10 are 
found in Fig. 12. These reconstructions show that for noise-free data the small difference in 
permittivity between the hyperinflation phantom and the pneumothorax phantom is clearly 
discernible. The results from noisy data are inconclusive due to the large discrepancies in organ 
boundaries that result in artifacts of similar magnitude to the small differences we are looking for 
here. 

  



 

 

SECTION VI. 

Conclusion 

 

Fig. 8. Reconstructions of the hyperinflation phantom using trigonometric and adjacent current patterns. Plots 
of the real and imaginary parts of the reconstruction are displayed on the same scale, respectively. 

 

Fig. 9. Difference images at increasing noise levels produced by subtracting the baseline reconstructions 
in Fig. 3 from those for hyperinflation in Fig. 8. The real and imaginary parts are on the same respective 
scales. Note that the particular noise distribution is unique to each reconstruction, so subtraction does not 
remove these effects. 



 

 

 

Table IV Table Indicates the Maximum Value of the Admittivity in the Heart Region and the the 
MinimumValues of the Admittivity in the Lung Region and in the Pneumothorax Region in the Reconstructions 
for the Pneumothorax Phantom with Trigonometric Current Patterns (TP) and Adjacent Current Patterns (AP). 
The Dynamic Ranges for the Conductivity Images are Indicated by 𝜎𝜎 and for Permittivity by 𝜖𝜖 

 

We have presented a direct 2-D EIT reconstruction algorithm for conductivity and permittivity on 
an arbitrary domain, and demonstrated that it provides reconstructions with very good spatial 
resolution on simulated data with low noise levels. It is demonstrated to be effective on pairwise 
current injection data with adjacent current patterns and on 

 

Fig. 10. Reconstructions of the pneumothorax phantom using trigonometric and adjacent current patterns. 
Plots of the real and imaginary parts of the reconstruction are displayed on the same scale, respectively. 



 

 

 

Fig. 11. Difference images produced by subtracting the baseline reconstructions in Fig. 3 from the 
pneumothorax reconstructions in Fig. 10. The real and imaginary parts are on the same respective scales. 
Note that the particular noise distribution is unique to each reconstruction, so subtraction does not remove 
these effects. 

 

Fig. 12. Difference images produced by subtracting the hyperinflation reconstructions in Fig. 8 from the 
pneumothorax reconstructions in Fig. 10. The real and imaginary parts are on the same respective scales. 
Note that the particular noise distribution is unique to each reconstruction, so subtraction does not remove 
these effects. 

trigonometric current pattern data. While the simulations presented here do not guarantee good 
results on experimental data, the good spatial resolution and reconstructed values on simulated 
chest phantoms including pleural effusion, hyperinflation, and pneumothorax indicate that the 
algorithm holds promise for applications to lung imaging. The difference images indicate the 
algorithm has the ability to distinguish between inhomogeneities with only a small difference in 
conductivity or permittivity values. The examples of hyperinflation and pneumthorax considered 



 

 

here differed from each other only in the imaginary component and the difference was 0.1S/m in 
the simulated phantom in a small region in the left lung. This difference was clearly apparent in the 
noise-free difference images between these two reconstructions. 
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	Electrical impedance tomography (EIT) is a relatively new imaging technique based on the fact that the electrical conductivity and permittivity vary in the different tissues and organs in the body, allowing one to form images from the reconstructed conductivity and permittivity distributions. In the 2-D geometry, EIT is clinically useful for chest imaging. Conductivity images have been used for monitoring pulmonary perfusion [5], [20], [44], determining regional ventilation in the lungs [19], [21], [49], detecting extravascular lung water [36], and evaluating shifts in lung fluid in congestive heart failure patients [18]. Regional results have been validated with CT images [12], [20], [21], [44] and radionuclide scanning [35] in the presence of pathologies such as atelectasis, pleural effusion, and pneumothorax.
	In EIT, data is collected on electrodes placed around the perimeter of a patient's chest, and a reconstruction algorithm is used to compute the admittivity 𝛾(𝑥,𝑦)=𝜎(𝑥,𝑦)+𝑖𝜔𝜖(𝑥,𝑦) in the plane of the electrodes. Here, 𝜎 is the conductivity of the medium, 𝜖 is the permittivity, and 𝜔 is the temporal angular frequency of the applied electromagnetic wave. Most data acquisition systems and algorithms compute the real part of 𝛾, that is, the conductivity. However, computing the permittivity component provides an additional image that may have clinical usefulness in distinguishing between certain conditions such as a pneumothorax and hyperinflation. Both of these conditions correspond to a low resistivity region, but the pneumothorax has zero permittivity while hyperinflation has low, nonzero permittivity.
	If the EIT image depicts changes in admittivity relative to another measured data set, the reconstruction is called a difference image. If the image represents an estimate of the actual admittivity values at each pixel in the domain of interest, it is called an absolute image.
	Here, we consider a direct reconstruction algorithm developed in [24] that reconstructs a complex admittivity without iteration from several integral equations. The algorithm in [24] is the first D-bar method for the reconstruction of admittivities in two dimensions. The framework is based on the uniqueness proof in [17], but equations relating the Dirichlet-to-Neumann map to the scattering transform and the exponentially growing solutions are not present in that work, and are derived in [24].
	Reconstruction algorithms for complex admittivities based on an iterative least-squares approach are found in [4], [15], [30] and an iterative package for 3-D reconstructions has been published in [42]. Another approach to the inverse problem is that of shape-based reconstruction methods for determining the location and shape of inclusions in the plane of the electrodes. Results from such methods can be used as priors or constraints in iterative approaches. Level-set methods for shape-based EIT reconstructions of conductivity include [1], [8], and [14]. The enclosure method was introduced in [25] and implemented (independently) in [6] and [26]. See, for example, [3] and [37] for a review of reconstruction algorithms for EIT.
	The work presented here is a direct method that makes use of exponentially growing solutions, or complex geometrical optics (CGO) solutions, to the admittivity equation. The steps of the algorithm are to compute these CGO solutions from knowledge of the Dirichlet-to-Neumann map, compute a scattering transform matrix, solve two systems of 𝜕¯ (D-bar) equations in the complex frequency variable k for the CGO solutions to a related elliptic system, and finally to reconstruct the admittivity distribution from the values of these related CGO solutions at 𝑘=0.
	In this paper, we extend the implementation to noncircular domains, focusing on technical aspects of the implementation not included in [24], and we demonstrate the good spatial resolution and accuracy of the algorithm on simulated examples of clinical interest. Absolute images and difference images of simulated pleural effusion, pneumothorax, and hyperinflation are presented, three conditions for which it would be beneficial to clinicians to be able to image in the ICU. To take into account various types of EIT hardware, we consider two types of applied current patterns in this work: trigonometric current patterns, in which current is applied simultaneously on all electrodes, and adjacent current patterns, in which only one pair of neighboring electrodes is active in each data acquisition set. We consider data with several noise levels and demonstrate that the algorithm is reasonably robust.
	A theory for full nonlinear reconstructions of permittivities in 3-D by a direct method does not yet exist, and while this method is not immediately generalizable to three dimensional reconstructions, 2-D reconstructions are useful, for instance, for imaging patients in the ICU under mechanical ventilation [12].
	This paper is organized as follows. In Section II we describe the simulation of the data and finite-dimensional approximation of the Dirichlet-to-Neumann map. In Section III, the direct D-bar reconstruction algorithm is briefly described. Details of the implementation are provided in Section IV. The absolute images and difference images of simulated pleural effusion, pneumothorax, and hyperinflation are found in Section V.
	SECTION II.
	The reconstruction algorithm requires knowledge of the Dirichlet-to-Neumann map (DN map), or voltage-to-current density map. In this section we describe the map mathematically and explain how a finite-dimensional matrix approximation is computed from data simulated by the finite element method (FEM).
	The reconstruction of admittivies 𝛾(𝑥,𝑦)=𝜎(𝑥,𝑦)+𝑖𝜔𝜖(𝑥,𝑦) from electrical boundary measurements is known as the inverse admittivity problem. The propagation of electromagnetic fields within the body is governed by Maxwell's equations. The application of time-harmonic currents and the electromagnetic properties of the human body facilitate reducing the model to the generalized Laplace equation
	∇⋅(𝛾(𝑥,𝑦)∇𝑢(𝑥,𝑦))=0,(𝑥,𝑦)∈Ω (1)
	where 𝛺 denotes a bounded region in the plane, and u denotes the electric potential. See, for example, [27] and [37] for details of this calculation.
	Applying a known voltage on the boundary of 𝛺 corresponds to the Dirichlet boundary condition
	𝑢(𝑥,𝑦)=𝑓(𝑥,𝑦),(𝑥,𝑦)∈∂Ω (2)
	where 𝜕𝛺 denotes the boundary of 𝛺, and knowledge of the resulting current density distribution on the boundary gives rise to the Neumann boundary condition
	𝛾(𝑥,𝑦)∂𝑢∂𝜈(𝑥,𝑦)=𝑗(𝑥,𝑦) (3)
	where ν denotes the outward unit normal to 𝜕𝛺. The mapping which takes a given voltage distribution on the boundary to the resulting current density distribution on the boundary is referred to as the Dirichlet-to-Neumann (DN), or voltage-to-current density, map and is denoted by 𝛬𝛾. Since the physical interpretation of 𝛬𝛾 is knowledge of the resulting current distributions on the boundary of 𝛺 corresponding to all possible voltage distributions on the boundary, it can be viewed as our data. In practice, current is applied on the electrodes and the resulting voltage is measured. This map, the Neumann-to-Dirichlet (ND) map, is denoted by 𝑅𝛾. The DN map is the inverse of the ND map. The finite-dimensional matrix approximations to 𝛬𝛾 and 𝑅𝛾 will be denoted by Λ𝛾𝑀 and 𝑅𝛾𝑀, respectively. When the admittivity is the constant value of 1 in 𝛺, the corresponding DN map will be denoted by 𝛬1. We will need the difference of DN maps, Λ𝛾−Λ1 in the forthcoming formulas, and we will denote this difference by 𝛿Λ𝛾 and the finite-dimensional matrix approximation to the difference by 𝛿Λ𝛾𝑀.
	We consider two choices of current patterns in our simulations. The first are the trigonometric patterns, 1≤ℓ≤𝐿
	𝑇ℓ𝑗=𝐶cos⁡(𝑗𝜃ℓ),1≤ℓ≤𝐿,1≤𝑗≤𝐿2𝐶sin⁡((𝐿2−𝑗)𝜃ℓ),1≤ℓ≤𝐿,𝐿2+1≤𝑗≤𝐿−1 (4)
	where L denotes the total number of electrodes, 𝜃ℓ=2𝜋ℓ/𝐿, and 𝑇ℓ𝑗 is the current on the ℓth electrode corresponding to the 𝑗th current pattern. The second is the adjacent current pattern, a pairwise activation pattern
	𝑇ℓ𝑗=𝐶,ℓ=𝑗,𝑗=1,…,𝐿−1−𝐶,ℓ=𝑗+1,𝑗=1,…,𝐿−10,otherwise. (5)
	Notice that in each case there are 𝐿−1 linearly independent current patterns, and the voltage values are “measured” on all L electrodes.
	The Complete Electrode Model (CEM) consists of the PDE (1) and boundary conditions that take into account both the shunting effect of the electrodes and the contact impedances between the electrodes and tissue. The CEM is well-studied in the EIT literature and the reader is referred to [7], [45], [48] for further details on the equations and their implementation into the FEM. Here, voltage data on 𝐿=32 electrodes was simulated with the CEM and implemented with the finite element method. The FEM computations were performed on the chest-shaped domain with perimeter 900 mm and 32 equispaced electrodes of length 0.029 m placed on the boundary. The effective contact impedance was chosen to be 𝑧=10−8Ω-m2 on all electrodes in our simulations. The current amplitude was chosen to be 𝐶=2mA.
	Where indicated, Gaussian relative noise was added to the simulated voltages as follows. Denote the (complex-valued) vector of computed voltages for the 𝑗th current pattern by 𝑉𝑗, let 𝜂 denote the noise level, and 𝑁𝑗 a Gaussian random vector (generated by the randn command in MATLAB) that is unique for each current pattern 𝑗. Denoting the noisy data by 𝑉~𝑗, we then have 𝑉~𝑗=Re(𝑉~𝑗)+𝑖Im(𝑉~𝑗) where
	The map Λ𝛾𝑀 was then computed as in [28] and [29], which we summarize briefly here. Let Φℓ𝑗 denote the (ℓ,𝑗)th entry of the matrix of applied currents with each column normalized with respect to the 𝑙2-vector norm. That is, Φℓ𝑗=𝑇𝑗/∥𝑇𝑗∥2. Let 𝑣ℓ𝑗 denote the entries of the 𝑗th voltage vector normalized so that 𝑣ℓ𝑗=𝑉ℓ/∥𝑇𝑗∥2. Let |𝑒ℓ| denote the area of the ℓth electrode. Then Λ𝛾𝑀=(𝑅𝛾𝑀)−1 where the (𝑚,𝑛)th entry of 𝑅𝛾𝑀 is given by
	𝑅𝛾𝑀(𝑚,𝑛):=𝛾0ℓ=1𝐿1|𝑒ℓ|Φℓ𝑚𝑣ℓ𝑛.     (6)
	/
	SECTION III.
	In the mathematical formulation of the reconstruction algorithm, we require special, nonphysical, exponentially growing solutions to (1), which are realized by introducing a nonphysical complex frequency parameter k, and extending (1) to the entire plane under the assumption that 𝛾 is constant in a neighborhood of the boundary of 𝛺. This assumption can be imposed in practice by assuming that near the boundary, 𝛾 is the best constant admittivity 𝛾0 approximation to the measured data. Having found γ0, the admittivity can be scaled by 𝛾~=𝛾/𝛾0 and the DN map can be scaled accordingly by Λ𝛾~=𝛾0Λ𝛾. With this scaling, 𝛾 is then recovered at the end by 𝛾=𝛾0𝛾~. See [46] for a treatment of the case of a nonconstant boundary conductivity for the real-valued D-bar method. In the remainder of this paper, we will identify a point 𝑥,𝑦∈ℝ2 with the complex number 𝑧=𝑥+𝑖𝑦, and thus the multiplication 𝑘𝑧 denotes complex multiplication 𝑘𝑧=(𝑘1+𝑖𝑘2)(𝑥+𝑖𝑦). The nonphysical exponentially growing solutions 𝑢𝑗 satisfy
	∇⋅(𝛾(𝑧)∇𝑢𝑗(𝑧,𝑘))=0,𝑧∈Ω,𝑘∈ℂ,𝑗=1,2  (7)
	where 𝑢1∼𝑒𝑖𝑘𝑧/(𝑖𝑘) and 𝑢2∼𝑒−𝑖𝑘𝑧/(−𝑖𝑘) in a sense that is made precise in [24]. The existence of such solutions is established in [24] and [50] where boundary integral equations in terms of the DN maps are presented. These solutions are the key connection between the CGO solutions and the measured data and satisfy the following boundary integral equations for 𝑧∈∂Ω:
	𝑢1(𝑧,𝑘)=𝑒𝑖𝑘𝑧𝑖𝑘−∂Ω𝐺𝑘(𝑧−𝜁)𝛿Λ𝛾𝑢1(𝜁,𝑘)𝑑𝑆(𝜁)𝑢2(𝑧,𝑘)=𝑒−𝑖𝑘𝑧−𝑖𝑘−∂Ω𝐺𝑘(−𝑧+𝜁)𝛿Λ𝛾𝑢2(𝜁,𝑘)𝑑𝑆(𝜁) (8)(9)
	where 𝐺𝑘(𝑧) is a special Green's function for the Laplacian known as the Faddeev Green's function [16]. It is defined by
	𝐺𝑘(𝑧):=𝑒𝑖𝑘𝑧𝑔𝑘(𝑧),−Δ𝐺𝑘=𝛿 (10)
	where
	𝑔𝑘(𝑧):=1(2𝜋)2ℝ2𝑒𝑖𝑧⋅𝜉𝜉(𝜉+2𝑘)𝑑𝜉,(−Δ−4𝑖𝑘∂)𝑔𝑘=𝛿 (11)
	for 𝑘∈ℂ∖{0}, where 𝑧⋅𝜉=𝑥𝜉1+𝑦𝜉2, 𝜉=𝜉1+𝑖𝜉2.
	A second type of CGO solution is required for the mathematical reconstruction algorithm. These solutions were introduced in [17], and involve formulating the problem as an elliptic system. Define 𝑄𝛾(𝑧) as a transformation of γ and a matrix operator 𝐷 by
	𝑄𝛾(𝑧)=0−12∂𝑧log𝛾(𝑧)−12∂𝑧log𝛾(𝑧)0𝐷=∂z00∂𝑧.    (12)
	Defining a vector 𝑣→=(𝑣1,𝑣2)𝑇=𝛾1/2(∂𝑧𝑢,∂𝑧𝑢)𝑇 in terms of the solution 𝑢 to (1), one sees that 𝐷𝑣→−𝑄𝛾𝑣→=0.
	Francini shows in [17] that for 𝜔 sufficiently small, 𝜎(𝑧)>𝜎0>0, and ∥𝜎∥𝑊1,∞(Ω),∥𝜖∥𝑊1,∞(Ω)≤𝛽, there exists a unique 2×2 matrix Ψ(𝑧,𝑘) for 𝑘∈ℂ that is a solution to
	with Ψ12,Ψ21∼0, Ψ11∼𝑒𝑖𝑘𝑧 and Ψ21∼𝑒−𝑖𝑘𝑧 where the asymptotic condition is made precise in [17]. The columns of 𝛹 serve as two such vectors 𝑣→  separately satisfying
	The values of 𝑢1 and 𝑢2 on ∂Ω are related to the off-diagonal entries of 𝛹 on ∂Ω through the boundary integrals [23]
	Ψ12(𝑧,𝑘)=∂Ω𝑒𝑖𝑘(𝑧−𝜁)4𝜋(𝑧−𝜁)𝛿Λ𝛾𝑢2(𝜁,𝑘)𝑑𝑆(𝜁)Ψ21(𝑧,𝑘)=∂Ω[𝑒𝑖𝑘(𝑧−𝜁)4𝜋(𝑧−𝜁)]𝛿Λ𝛾𝑢1(𝜁,𝑘)𝑑𝑆(𝜁).(14)(15)
	As in other D-bar algorithms, [2], [34] the admittivity can be reconstructed directly from knowledge of the CGO solutions. Equation (16) follows directly from formulas in [23], [24]
	𝛾(𝑧)=exp−2𝜋ℂ1𝑧−𝜁∂𝜁𝑀−(𝜁,0)𝑀+(𝜁,0)𝑑𝜁 (16)
	where
	𝑀+(𝑧,𝑘)=𝑀11(𝑧,𝑘)+𝑒−𝑖(𝑘𝑧+𝑘𝑧)𝑀12(𝑧,𝑘)𝑀−(𝑧,𝑘)=𝑀22(𝑧,𝑘)+𝑒𝑖(𝑘𝑧+𝑘𝑧)𝑀21(𝑧,𝑘) (17)(18)
	and the matrix of CGO solutions 𝑀(𝑧,𝑘) are related to Ψ(𝑧,𝑘) via
	𝑀(𝑧,𝑘)=Ψ(𝑧,𝑘)𝑒−𝑖𝑧𝑘00𝑒𝑖𝑧𝑘.  (19)
	The values of the CGO solutions 𝑀(𝑧,0) are found by solving the following D-bar equation, in the kvariable, derived in [17]
	∂𝑘𝑀(𝑧,𝑘)=𝑀(𝑧,𝑘)𝑒𝑖(𝑘𝑧+𝑘𝑧)00𝑒−𝑖(𝑘𝑧+𝑘𝑧)𝑆𝛾(𝑘) (20)
	for 𝑀(𝑧,𝑘) and evaluating at 𝑘=0. 𝑆𝛾(𝑘) is called the scattering transform matrix, a matrix with diagonal entries of 0 and off-diagonal entries defined by
	𝑆12(𝑘)=𝑖𝜋Ω𝑄12(𝑧)𝑒−𝑖𝑘𝑧Ψ22(𝑧,𝑘)𝑑𝜇(𝑧)𝑆21(𝑘)=−𝑖𝜋Ω𝑄21(𝑧)𝑒𝑖𝑘𝑧Ψ11(𝑧,𝑘)𝑑𝜇(𝑧). (21)(22)
	Integrating (21) and (22) by parts results in formulas for 𝑆12 and 𝑆21 in terms of the boundary values of 𝛹
	𝑆12(𝑘)=𝑖2𝜋∂Ω𝑒−𝑖𝑘𝑧Ψ12(𝑧,𝑘)(𝜈1+𝑖𝜈2)𝑑𝑆(𝑧)𝑆21(𝑘)=−𝑖2𝜋∂Ω𝑒𝑖𝑘𝑧Ψ21(𝑧,𝑘)(𝜈1−𝑖𝜈2)𝑑𝑆(𝑧) (23)(24)
	illustrating the necessity of only the boundary values of the CGO solutions Ψ12 and Ψ21 rather than their solutions in all of ℝ2.
	This completes the set of equations necessary to directly determine γ from Λγ. We clarify these steps in Fig.1.
	/
	Fig. 1. Flowchart describing the algorithm.
	SECTION IV.
	The first three steps in the algorithm involve computing integrals over the boundary of the domain. When the computation involves the DN map, the boundary is discretized in terms of the centers of the 𝐿 electrodes, since our electrode model assumes the voltages are constant on each electrode. We denote the center of the ℓth electrode by 𝑧ℓ,ℓ=1,…,𝐿.
	The boundary integrals (8) and (9) for 𝑢1 and 𝑢2, respectively, on the boundary of the chest-shaped domain were computed as follows. The normalized basis functions Φℓ𝑗 (4) cannot be used to accurately approximate a constant function, and so we modify equations (8) and (9), making use of the fact that 𝛿Λ𝛾(1/(𝑖𝑘))=1/(𝑖𝑘)𝛿Λ𝛾(1)=0, and write (8) and (9) in the equivalent forms for 𝑢~1(𝑧,𝑘):=𝑢1(𝑧,𝑘)−1/𝑖𝑘, 𝑢~2(𝑧,𝑘):=𝑢2(𝑧,𝑘)+1/𝑖𝑘
	𝑢~1(𝑧,𝑘)=𝑒1(𝑧,𝑘)−∂Ω𝐺𝑘(𝑧−𝜁)𝛿Λ𝛾𝑢~1(𝜁,𝑘)𝑑𝑆(𝜁)𝑢~2(𝑧,𝑘)=𝑒2(𝑧,𝑘)−∂Ω𝐺𝑘(−𝑧+𝜁)𝛿Λ𝛾𝑢~2(𝜁,𝑘)𝑑𝑆(𝜁) (25)(26)
	where 𝑒1(𝑧,𝑘):=𝑒𝑖𝑘𝑧/𝑖𝑘−1/𝑖𝑘 and 𝑒2(𝑧,𝑘):=𝑒−𝑖𝑘𝑧/−𝑖𝑘+1/𝑖𝑘.
	Equations (25) and (26) were solved for 𝑘 values on a disk |𝑘|≤𝑅 independently for each 𝑘 as follows (note that this step can be performed in parallel). The functions 𝑢~1(𝑧,𝑘), 𝑢~2(𝑧,𝑘), 𝑒1𝑧,𝑘 and 𝑒2(𝑧,𝑘) restricted to the boundary were expanded in the normalized basis functions Φℓ𝑗 and evaluated at the boundary points 𝑧ℓ
	𝑢~1(𝑧ℓ,𝑘)≈𝑗=1𝐿−1𝑏𝑗1(𝑘)Φℓ𝑗𝑢~2(𝑧ℓ,𝑘)≈𝑗=1𝐿−1𝑏𝑗2(𝑘)Φℓ𝑗𝑒ℓ1(𝑘)=𝑗=1𝐿−1𝑐𝑗1(𝑘)Φℓ𝑗𝑒ℓ2(𝑘)=𝑗=1𝐿−1𝑐𝑗2(𝑘)Φℓ𝑗.  (27)(28)
	Let 𝐛𝟏(𝑘) denote the column vector 𝐛𝟏(𝑘)=[𝑏11(𝑘),…,𝑏𝐿−11(𝑘)]𝑇, and define 𝐛𝟐(𝑘),𝐜𝟏(𝑘) and 𝐜𝟐(𝑘) analogously.
	Let 𝐸ℓ′ denote the ℓ′th subdivision of the boundary (ℓ′=1,…,𝐿) centered at 𝑧ℓ′ with length 𝑃/𝐿, where 𝑃 denotes the perimeter of the domain. Splitting the integral over ∂Ω into a sum of integrals over the subsections 𝐸ℓ′
	Using the expansions for 𝑢~1 and 𝑒1, (27) and (28), respectively, we have
	where 𝑓𝑗(𝜁ℓ′) denotes the action of the discretized 𝛿Λ𝛾𝑀 matrix on the 𝑗th normalized basis function evaluated at 𝜁ℓ′. Define
	𝐆~𝑘(ℓ,ℓ′)=𝐺𝑘(𝑧ℓ,𝜁ℓ′)ℓ≠ℓ′𝐿𝑃𝐸ℓ′𝐺𝑘(𝑧ℓ−𝜁)𝑑𝑆(𝜁)ℓ=ℓ′ (29)
	then
	𝑗=1𝐿−1𝑏𝑗1(𝑘)Φℓ𝑗≈𝑗=1𝐿−1𝑐𝑗1(𝑘)Φℓ𝑗                                                                              −𝑃𝐿𝑗=1𝐿−1𝑏𝑗1(𝑘)ℓ′=1𝐿𝐆~𝑘(ℓ,ℓ′)𝑓𝑗(𝜁ℓ′).(30)
	Following [13]
	𝑓𝑝(𝜁ℓ′)≈(Φ𝛿Λ𝛾𝑀)(ℓ′,𝑗) (31)
	i.e., the (ℓ′,)th entry in the matrix resulting from multiplication of the normalized current pattern matrix 𝛷 and the discretized difference in DN maps 𝛿Λ𝛾𝑀. Using the properties of matrix multiplication, (30) can be rewritten as
	or equivalently
	a matrix equation for the unknown coefficients 𝐛𝟏 which are needed in the expansion of 𝑢~1=𝑢1−1/𝑖𝑘.
	Using the orthonormality of 𝛷, we multiply both sides of the equation by Φ𝑇, and solve
	where
	𝐴=𝑃𝐿Φ𝑇𝐆~𝑘Φ𝛿Λ𝛾𝑀.  (33)
	For each value of 𝑘∈ℂ∖{0}, we solve the system (32) using GMRES for the unknown coefficients 𝐛𝟏 and then reconstruct 𝑢1−1/𝑖𝑘 for the specified value of k via (27).
	Numerical experimentation has shown that the standard Green's function for the Laplacian
	𝐺0(𝑧−𝜁):=−12𝜋log⁡|𝑧−𝜁| (34)
	is a good approximation to 𝐺𝑘(𝑧−𝜁) [13], [39]. However, in [13], the singularity that occurs at 𝜁=𝑧ℓ in G0 is dealt with by setting the value to zero. Here, we will instead use the more precise calculation (29), replacing 𝐺𝑘 by 𝐺0, and calculate the integrable singularity numerically using Simpson's rule over the non-circular boundary ∂Ω. For each subdivision 𝐸ℓ, of the boundary
	where 𝜁𝑝, 𝑝=1,…,𝑃𝑧, are points on 𝐸ℓ such that no 𝜁𝑝 coincides with 𝑧ℓ.
	Note that the boundary integral (9) for 𝑢2 requires 𝐺0(−𝑧+𝜁) instead of 𝐺0(𝑧−𝜁). Due to the definition of 𝐺0 in (34), we have the relationship
	Therefore, in an analogous fashion, the unknown coefficients 𝐛𝟐 for 𝑢~2 (using 𝐺0) may be found via
	where A is the same matrix defined above in (33), and 𝑢~2=𝑢2+1/𝑖𝑘 may be subsequently reconstructed via (27).
	To compute Ψ12(𝑧,𝑘) and Ψ21(𝑧,𝑘) for 𝑧 on the boundary and 𝑘≤𝑅 from (14) and (15), only the coefficients in the expansions of 𝑢~1(𝑧,𝑘) and 𝑢~2(𝑧,𝑘) are needed. The ∂𝑧 derivative of 𝐺𝑘(−𝑧+𝜁) and ∂z derivative of 𝐺𝑘(𝑧−𝜁) are approximated by ∂𝑧𝐺𝑘(−𝑧𝑛+𝜁ℓ′)≈Γ(𝑛,ℓ′) where
	Γ(𝑛,ℓ′)≡{𝑒𝑖𝑘(𝑧𝑛−𝜁ℓ′)4𝜋(𝑧𝑛−𝜁ℓ′), if arg⁡(𝑧𝑛−𝜁ℓ′)≥tol0, otherwise (36)
	and ∂¯zGk(zn−ζℓ′)≈Γ~(n,ℓ′) where
	Γ~(𝑛,ℓ′)≡{[𝑒𝑖𝑘(𝑧𝑛−𝜁ℓ′)4𝜋(𝑧𝑛−𝜁ℓ′)], if arg⁡(𝑧𝑛−𝜁ℓ′)≥tol0, otherwise (37)
	respectively for ℓ′=1,…,𝐿 and 𝑛=1,…,𝑁𝑧 where 𝑁𝑧 is the number of evaluation points along the boundary. Note that 𝑁𝑧 need not coincide with 𝐿. Now the vectors of CGO solutions Ψ12 and Ψ21 evaluated at 𝑁𝑧 points on the boundary can be approximated by
	Ψ12(𝑘)≈𝑃𝑁𝑧ΓΦ𝛿Λ𝛾𝑀𝐛𝟐Ψ21(𝑘)≈𝑃𝑁𝑧Γ~Φ𝛿Λ𝛾𝑀𝐛𝟏. (38)(39)
	The formulas for the scattering transform 𝑆12(𝑘) and 𝑆21(𝑘), (23) and (24) respectively, require knowledge of the outward facing unit normal vector 𝜈=(𝜈1,𝜈2)=𝜈1+𝑖𝜈2 and its complex conjugate 𝜈, respectively
	for each evaluation point 𝑧 along the boundary. When the boundary is a circle of radius 𝑟, 𝜈 can be described by the coordinate 𝑧 on ∂Ω divided by its magnitude (i.e., 𝑧/|𝑧|). However, when the boundary is noncircular, as in the case with the chest-shaped domain used here, we must approximate 𝜈 using a parameterization 𝑟(𝜃) of the boundary for 𝜃∈[0,2𝜋).
	Previous methods [40], [41] have transformed the problem to the unit disc by scaling the DN map by the maximum radial value of the noncircular domain and have produced good reconstructions. Here, as in [23], we seek to improve the reconstructions by a more accurate modeling of the boundary of the domain and thus do not scale the DN map by any radial component.
	The unit outward normal vector at a point 𝑧0=𝑥0+𝑖𝑦0 on the boundary was approximated by setting 𝜈(𝑧0) equal to the outward facing vector orthogonal to the unit tangent vector 𝜏(𝑧0) to the boundary pointing in the counter-clockwise orientation in 𝜃. This tangent vector was approximated by taking a forward difference with a second point 𝑧+ on ∂Ω a small distance away from 𝑧0 in the counter-clockwise direction
	and therefore
	When evaluating the scattering transforms 𝑆12(𝑘) and 𝑆21(𝑘) numerically, we approximate the integral by a finite sum using a Simpson's rule as follows:
	𝑆12(𝑘)≈𝑖2𝜋𝑃𝑁𝑧𝑛=1𝑁𝑧𝑒−𝑖𝑘𝑧𝑛Ψ12(𝑧𝑛,𝑘)𝜈𝑛𝑆21(𝑘)≈−𝑖2𝜋𝑃𝑁𝑧𝑛=1𝑁𝑧𝑒𝑖𝑘𝑧𝑛Ψ21(𝑧𝑛,𝑘)𝜈𝑛 (40)(41)
	and use bilinear interpolation to compute 𝑆12(0) and 𝑆21(0). The scattering transform is computed for |𝑘|≤𝑅 and further restricted in the case of noisy data, which results in blow-up of the scattering transform. This truncation has been rigorously proven to be tantamount to a nonlinear regularization for the D-bar method for real-valued conductivities [34], and it has the same regularizing behavior for this method.
	The solution to the matrix ∂𝑘 (20) can be written as two systems as follows:
	1=𝑀11(𝑧,𝑘)−1𝜋𝑘∗(𝑀12(𝑧,𝑘)𝑒(𝑧,−𝑘)𝑆21(𝑘))0=𝑀12(𝑧,𝑘)−1𝜋𝑘∗(𝑀11(𝑧,𝑘)𝑒(𝑧,𝑘)𝑆12(𝑘)) (42)
	and
	1=𝑀22(𝑧,𝑘)−1𝜋𝑘∗(𝑀21(𝑧,𝑘)𝑒(𝑧,𝑘)𝑆12(𝑘))0=𝑀21(𝑧,𝑘)−1𝜋𝑘∗(𝑀22(𝑧,𝑘)𝑒(𝑧,−𝑘)𝑆21(𝑘)) (43)
	where 𝑒(𝑧,𝑘)=𝑒𝑖(𝑧𝑘+𝑧𝑘).
	The numerical solver developed in [31] for the inverse conductivity problem for equations of the form
	was adapted to solve systems of equations and to take into account the difference that here the unknowns 𝑀(𝑧,𝑘) are not conjugated, but instead the argument k is conjugated. The solver is based on the fast method by Vainikko [47] that uses FFT's for solving integral equations with weakly singular kernels. Here, we use a one-grid version of that method. The implementation for this problem is described in [24]. Note that (42) and (43) are solved for |𝑘|≤𝑅.
	/
	Fig. 2. Baseline phantom. Admittivity values are in S/m.
	The convolution 1/𝜋𝑘∗𝑓(𝑘) is implemented with FFT's on a uniform k-grid of size (2𝑁+1)×(2𝑁+1) with uniform step size ℎ𝜅 by computing
	A matrix-free solution of the resulting system for each value of 𝑧 was accomplished using GMRES. This step of the method can be implemented in parallel for each 𝑧 in the chosen mesh of 𝛺 and one only needs to store 𝑀(𝑧,0).
	The admittivity is computed by solving (16) numerically. The functions 𝑀+ and 𝑀− in (17) and (18) were evaluated using the entries of 𝑀(𝑧,0) recovered when solving the ∂𝑘 equation as above. Centered finite differences with a uniform step size of ℎ𝑧≈0.0031 were used to evaluate the ∂𝑧 and ∂𝑧 derivatives of 𝑀+ and 𝑀−, respectively. The convolution was then computed using FFT's as above
	SECTION V.
	The test problems were constructed to be simple simulations of organs and situations of interest in EIT thoracic imaging. Reconstructions were computed on a z-mesh of 128×128 elements with zero-mean Gaussisan random noise added to the voltage data at 0%, 0.01%, 0.05%, and 0.1% of the maximum voltage for that data set, as described in Section II. Each EIT system has its own noise level associated with it, and some are published, some are not. As an example, the ACT3 system has phase sensitive voltmeters with a published resolution of 1 part in 216 (16 bits) for both the real and quadrature voltage components, which is equivalent to an SNR of 104 dB [9], [10]. This corresponds to less than 0.01% error in the voltage measurements. The system has a 1 in 12 bit voltmeter resolution for faster data acquision, which corresponds to a voltmeter precision of 0.024%. Another test described in [10] performed on each channel reports an absolute accuracy of 99.5%.
	In the noise-free case, the CGO solutions and scattering transform were computed on a disk of radius 𝑅=40 in the 𝑘-plane. In the presence of noise, an additional nonuniform truncation approach was used to remove artificial blowups in the scattering data resulting from the noisy data. In each case, if the magnitude of either the real or imaginary parts of the scattering data 𝑆(𝑘) exceeded a certain empirically determined threshold, the value was set to zero. In general, the maximal admissible |𝑘| became smaller as the noise level increased. We include the results from the best choice of admissible 𝑘 here and do not include a thorough study of the effects of various R in the scope of this paper but point out that the choices of 𝑅 and such empirical thresholds are very intuitive when looking at plots of the scattering data (see [23] for such pictures).
	/
	Fig. 3. Reconstructions of the baseline phantom using trigonometric and adjacent current patterns. Plots of the real and imaginary parts of the reconstruction are displayed on the same scale, respectively.
	/
	Table I Table Indicates Maximum Value of the Admittivity in the Heart Region and the Minimum Values of the Admittivity in the Lung Region in the Reconstructions for the Baseline Phantom with Trigonometric Current Patterns (TP) and Adjacent Current Patterns (AP). Actual Values are Provided for the Test Problem for Comparison. Dynamic Ranges for the Conductivity Images are Indicated by 𝜎 and for Permittivity by 𝜖
	/
	Fig. 4. The pleural effusion phantom. Admittivity values are in S/m.
	The first example we consider is an idealized chest phantom with heart and lungs (see Fig. 2). The admittivity of the background was chosen to be 0.8+0.4𝑖S/m, representing a rough average value of the low conductivity and permittivity components of bone and fat in a chest and the high conductivity and permittivity values of muscle. The admittivity of the heart was 1.1+0.6𝑖S/m, and the admittivity of the lung was 0.5+0.2𝑖S/m. Note that this example serves as a good baseline for the examples that follow that include additional inclusions or inhomogeneities.
	Reconstructions of the baseline chest phantom from trigonometric and adjacent current patterns are found in Fig. 3. Recall from Section II that the current amplitude is 𝐶=2mA and the effective contact impedance is 𝑧=10−8Ω/m2. The reconstructions show excellent spatial resolution of the heart and lungs from noise-free data with a dynamic range of 76% for the conductivity and 80%
	/
	Table II Table Indicates the Maximum Value of the Admittivity in the Heart Region and in the Pleural Effusion Region and the Minimum Values of the Admittivity in the Lung Region in the Reconstructions for the Pleural Effusion Phantom with Trigonometric Current Patterns (TP) and Adjacent Current Patterns (AP). Actual Values are Provided for the Test Problem for Comparison. Dynamic Ranges for the Conductivity Images are Indicated by 𝜎 and for Permittivity by 𝜖
	/
	Fig. 5. Reconstructions of the pleural effusion phantom using trigonometric and adjacent current patterns. Plots of the real and imaginary parts of the reconstruction are displayed on the same scale, respectively.
	/
	Fig. 6. Difference images produced by subtracting the baseline reconstructions in Fig. 3 from the pleural effusion reconstructions in Fig. 5. The real and imaginary parts are on the same respective scales. Note that the particular noise distribution is unique to each reconstruction, so subtraction does not remove these effects.
	for the permittivity. The maximum value of the conductivity/permittivity was found in the heart region for all noise levels and correspondingly the minimum was found in the lung region. These values and values of the dynamic range are found in Table I for all noise levels for reconstructions from both sets of current patterns. With increasing noise level, there is an increasing distortion in the shape of the organ boundaries, and the heart appears elongated and pulled toward the center, particularly in the permittivity images from the adjacent current patterns.
	A pleural effusion is a condition in which there is an excess of fluid in the pleural space, the area between the lung and chest cavity wall which naturally contains a small amount of lubricating fluid and layers of tissue. Pulmonary edema is characterized by fluid accumulation in the interstitial space of the lung, which may progress to accumulate in the alveoli in severe cases. The idealized numerical phantom presented here could serve as a model for either pleural effusion or focal edema in which the edema is not present throughout the entire lung. We will refer to this example as a pleual effusion for simplicity. The pleural effusion was simulated by adding a region of high conductivity, high permittivity in the left lung (see Fig. 4 and note that the subject's left lung appears on the right in the image), with conductivity and permittivity chosen to match that of the heart for simplicity, since this roughly simulates the electrical properties of blood. The dynamic ranges and the maximum and minimum reconstructed values for the heart, lungs, and fluid are shown Table II for the trigonometric and adjacent current patterns for the four noise levels considered here. In general, there is a decrease in dynamic range as the noise level increases. As is evident from the values in the table, and from the reconstructions in Fig. 5, the values in the fluid-filled region decrease with increasing noise, particularly for the adjacent current patterns. In general, however, the images are fairly robust with respect to noise, and the presence of an imhomogeneity is clearly visible in all images. As in the baseline image, there is some distortion of the organs and the inhomogeneity with increasing noise level, and the heart is elongated, but is not pushed to the center as it was in the baseline images. Fig. 6 shows a difference image produced by subtracting the baseline reconstructions in Fig. 3 from the pleural effusion reconstructions in Fig. 5. The fluid-filled region is visible for all noise levels, and the spatial position is quite accurate for the lowest three levels. The contrast values diminish slightly with increasing noise level. The absolute images are arguably better than the difference images since the difference images contain artifacts due to organ distortion in the reconstructions. We remark that a new noise distribution was used in each reconstruction, so the effects of noise are not subtracted out in the difference images. This may be slightly contrary to the experimental case in which to some extent noise and electrode effects are subtracted out in difference images.
	/
	Table III Table Indicates the Maximum Value of the Admittivity in the Heart Region and the MinimumValues of the Admittivity in the Lung and in the Hyperinflation Region in the Reconstructions for the Hyperinflation Phantom with Trigonometric Current Patterns (TP) and Adjacent Current Patterns (AP). The Dynamic Ranges for the Conductivity Images are Indicated by 𝜎 and for Permittivity by 𝜖
	/
	Fig. 7. Phantom for hyperinflation (H) and pneumothorax (P). Admittivity values are in S/m.
	Hyperinflation in the left lung was simulated by adding a region of low conductivity and low permittivity to model the lower density of lung tissue in the left lung to the baseline phantom. A pneumothorax in the left lung was simulated by adding a region of low conductivity and zero permittivity in the left lung to the baseline phantom. The numerical phantoms for hyperinflation and pneumothorax are found in Fig. 7. The phantoms differ from each other only in the permittivity values in the hyperinflation/pneumothorax lung region.
	The maximum and minimum values for the heart, lungs, and region of hyperinflation are shown in Table III for the trigonometric and adjacent current patterns. While there is little to no drop in the reconstructed values in this region, the reconstructions, found in Fig. 8 do show an enlarged left lung, particularly in permittivity images. To further study the reconstruction of this region, Fig.9shows a difference image produced by subtracting the baseline reconstructions in Fig. 3 from those for hyperinflation in Fig. 8. It is clear from the difference images, particularly in the noise-free case, that a region more resistive and with lower permittivity than the background is present near the left lung. However, other differences between the hyperinflation reconstruction and baseline are equally prominent in the difference image, and so identifying such a region from the difference image may also be inconclusive. However, the noise-free case and the absolute images show that the small difference in organ shape and conductivity values in the phantom does correspond to a reconstructable image by this method, and the method used here of modeling noise, namely, a unique noise distribution for each data set, does not perfectly correspond to an experimental situation, where the noise has a random component as well as a system-related component that does not change with each data set for a given experimental set-up. All data sets, including noise-free data, do contain contact impedance, modeled in the same way in each simulation.
	The corresponding table of maximum and minimum values for the pneumothorax are shown in Table IV, and the absolute images are found in Fig. 10. The reconstructions again show an enlarged left lung, with good organ shape resolution and overall reconstructed conductivity values, but with no drop in the conductivity in the pneumothorax region. The difference images, found in Fig. 11, are comparable to those of hyperinflation. Finally, images formed by subtracting the hyperinflation reconstructions in Fig. 8 from the pneumothorax reconstructions in Fig. 10 are found in Fig. 12. These reconstructions show that for noise-free data the small difference in permittivity between the hyperinflation phantom and the pneumothorax phantom is clearly discernible. The results from noisy data are inconclusive due to the large discrepancies in organ boundaries that result in artifacts of similar magnitude to the small differences we are looking for here.
	SECTION VI.
	/
	Fig. 8. Reconstructions of the hyperinflation phantom using trigonometric and adjacent current patterns. Plots of the real and imaginary parts of the reconstruction are displayed on the same scale, respectively.
	/
	Fig. 9. Difference images at increasing noise levels produced by subtracting the baseline reconstructions in Fig. 3 from those for hyperinflation in Fig. 8. The real and imaginary parts are on the same respective scales. Note that the particular noise distribution is unique to each reconstruction, so subtraction does not remove these effects.
	/
	Table IV Table Indicates the Maximum Value of the Admittivity in the Heart Region and the the MinimumValues of the Admittivity in the Lung Region and in the Pneumothorax Region in the Reconstructions for the Pneumothorax Phantom with Trigonometric Current Patterns (TP) and Adjacent Current Patterns (AP). The Dynamic Ranges for the Conductivity Images are Indicated by 𝜎 and for Permittivity by 𝜖
	We have presented a direct 2-D EIT reconstruction algorithm for conductivity and permittivity on an arbitrary domain, and demonstrated that it provides reconstructions with very good spatial resolution on simulated data with low noise levels. It is demonstrated to be effective on pairwise current injection data with adjacent current patterns and on
	/
	Fig. 10. Reconstructions of the pneumothorax phantom using trigonometric and adjacent current patterns. Plots of the real and imaginary parts of the reconstruction are displayed on the same scale, respectively.
	/
	Fig. 11. Difference images produced by subtracting the baseline reconstructions in Fig. 3 from the pneumothorax reconstructions in Fig. 10. The real and imaginary parts are on the same respective scales. Note that the particular noise distribution is unique to each reconstruction, so subtraction does not remove these effects.
	/
	Fig. 12. Difference images produced by subtracting the hyperinflation reconstructions in Fig. 8 from the pneumothorax reconstructions in Fig. 10. The real and imaginary parts are on the same respective scales. Note that the particular noise distribution is unique to each reconstruction, so subtraction does not remove these effects.
	trigonometric current pattern data. While the simulations presented here do not guarantee good results on experimental data, the good spatial resolution and reconstructed values on simulated chest phantoms including pleural effusion, hyperinflation, and pneumothorax indicate that the algorithm holds promise for applications to lung imaging. The difference images indicate the algorithm has the ability to distinguish between inhomogeneities with only a small difference in conductivity or permittivity values. The examples of hyperinflation and pneumthorax considered here differed from each other only in the imaginary component and the difference was 0.1S/m in the simulated phantom in a small region in the left lung. This difference was clearly apparent in the noise-free difference images between these two reconstructions.
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