48,655 research outputs found

    Recognizing Degraded Handwritten Characters

    Get PDF
    In this paper, Slavonic manuscripts from the 11th century written in Glagolitic script are investigated. State-of-the-art optical character recognition methods produce poor results for degraded handwritten document images. This is largely due to a lack of suitable results from basic pre-processing steps such as binarization and image segmentation. Therefore, a new, binarization-free approach will be presented that is independent of pre-processing deficiencies. It additionally incorporates local information in order to recognize also fragmented or faded characters. The proposed algorithm consists of two steps: character classification and character localization. Firstly scale invariant feature transform features are extracted and classified using support vector machines. On this basis interest points are clustered according to their spatial information. Then, characters are localized and eventually recognized by a weighted voting scheme of pre-classified local descriptors. Preliminary results show that the proposed system can handle highly degraded manuscript images with background noise, e.g. stains, tears, and faded characters

    Text Line Segmentation of Historical Documents: a Survey

    Full text link
    There is a huge amount of historical documents in libraries and in various National Archives that have not been exploited electronically. Although automatic reading of complete pages remains, in most cases, a long-term objective, tasks such as word spotting, text/image alignment, authentication and extraction of specific fields are in use today. For all these tasks, a major step is document segmentation into text lines. Because of the low quality and the complexity of these documents (background noise, artifacts due to aging, interfering lines),automatic text line segmentation remains an open research field. The objective of this paper is to present a survey of existing methods, developed during the last decade, and dedicated to documents of historical interest.Comment: 25 pages, submitted version, To appear in International Journal on Document Analysis and Recognition, On line version available at http://www.springerlink.com/content/k2813176280456k3

    A new approach for improving coronary plaque component analysis based on intravascular ultrasound images

    Get PDF
    Virtual histology intravascular ultrasound (VH-IVUS) is a clinically available technique for atherosclerosis plaque characterization. It, however, suffers from a poor longitudinal resolution due to electrocardiogram (ECG)-gated acquisition. This article presents an effective algorithm for IVUS image-based histology to overcome this limitation. After plaque area extraction within an input IVUS image, a textural analysis procedure consisting of feature extraction and classification steps is proposed. The pixels of the extracted plaque area excluding the shadow region were classified into one of the three plaque components of fibro-fatty (FF), calcification (CA) or necrotic core (NC) tissues. The average classification accuracy for pixel and region based validations is 75% and 87% respectively. Sensitivities (specificities) were 79% (85%) for CA, 81% (90%) for FF and 52% (82%) for NC. The kappa (kappa) = 0.61 and p value = 0.02 indicate good agreement of the proposed method with VH images. Finally, the enhancement in the longitudinal resolution was evaluated by reconstructing the IVUS images between the two sequential IVUS-VH images
    corecore