8 research outputs found

    Absolute orientation based on distance kernel functions

    Full text link
    © 2016 by the authors. The classical absolute orientation method is capable of transforming tie points (TPs) from a local coordinate system to a global (geodetic) coordinate system. The method is based only on a unique set of similarity transformation parameters estimated by minimizing the total difference between all ground control points (GCPs) and the fitted points. Nevertheless, it often yields a transformation with poor accuracy, especially in large-scale study cases. To address this problem, this study proposes a novel absolute orientation method based on distance kernel functions, in which various sets of similarity transformation parameters instead of only one set are calculated. When estimating the similarity transformation parameters for TPs using the iterative solution of a non-linear least squares problem, we assigned larger weighting matrices for the GCPs for which the distances from the point are short. The weighting matrices can be evaluated using the distance kernel function as a function of the distances between the GCPs and the TPs. Furthermore, we used the exponential function and the Gaussian function to describe distance kernel functions in this study. To validate and verify the proposed method, six synthetic and two real datasets were tested. The accuracy was significantly improved by the proposed method when compared to the classical method, although a higher computational complexity is experienced

    Error in target-based georeferencing and registration in terrestrial laser scanning

    Get PDF
    Terrestrial laser scanning (TLS) has been used widely for various applications, such as measurement of movement caused by natural hazards and Earth surface processes. In TLS surveying, registration and georeferencing are two essential steps, and their accuracy often determines the usefulness of TLS surveys. So far, evaluation of registration and georeferencing errors has been based on statistics obtained from the data processing software provided by scanner manufacturers. This paper demonstrates that these statistics are incompetent measures of the actual registration and georeferencing errors in TLS data and, thus, should no longer be used in practice. To seek a suitable replacement, an investigation of the spatial pattern and the magnitude of the actual registration and georeferencing errors in TLS data points was undertaken. This led to the development of a quantitative means of estimating the registration- or georeferencing-induced positional error in point clouds. The solutions proposed can aid in the planning of TLS surveys where a minimum accuracy requirement is known, and are of use for subsequent analysis of the uncertainty in TLS datasets

    A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures

    Get PDF
    Change detection and deformation monitoring is an active area of research within the field of engineering surveying as well as overlapping areas such as structural and civil engineering. The application of Terrestrial Laser Scanning (TLS) techniques for change detection and deformation monitoring of concrete structures has increased over the years as illustrated in the past studies. This paper presents a review of literature on TLS application in the monitoring of structures and discusses registration and georeferencing of TLS point cloud data as a critical issue in the process chain of accurate deformation analysis. Past TLS research work has shown some trends in addressing issues such as accurate registration and georeferencing of the scans and the need of a stable reference frame, TLS error modelling and reduction, point cloud processing techniques for deformation analysis, scanner calibration issues and assessing the potential of TLS in detecting sub-centimetre and millimetre deformations. However, several issues are still open to investigation as far as TLS is concerned in change detection and deformation monitoring studies such as rigorous and efficient workflow methodology of point cloud processing for change detection and deformation analysis, incorporation of measurement geometry in deformation measurements of high-rise structures, design of data acquisition and quality assessment for precise measurements and modelling the environmental effects on the performance of laser scanning. Even though some studies have attempted to address these issues, some gaps exist as information is still limited. Some methods reviewed in the case studies have been applied in landslide monitoring and they seem promising to be applied in engineering surveying to monitor structures. Hence the proposal of a three-stage process model for deformation analysis is presented. Furthermore, with technological advancements new TLS instruments with better accuracy are being developed necessitating more research for precise measurements in the monitoring of structures

    Long-term monitoring of a landslide in Stone County, Missouri using high precision multi-temporal laser scanning

    Get PDF
    A terrestrial laser scanning survey was conducted over the course of 1.5 years to test and validate a new target tracking method which characterizes the surface and subsurface behavior of soft slope landslides. Reflective spherical Styrofoam targets were mounted onto steel rods and driven into multiple levels of a landslide located in Stone County, Missouri. These targets were scanned a total of seventeen times over the course of the survey and were used as a proxy to measure the displacement of specific areas of the landslide. The three-dimensional point cloud data was processed through a software suite specifically developed to process data retrieved from reflective spherical targets. A geophysical survey was also conducted toward the later portion of the scanning survey to get a sense of what types of material were below the slide surface. On the final date of the survey, a basic surface map of the landslide was generated based on satellite imagery and physical observations at the slide site. All of these results were compiled and analyzed along with prior control and field tests to see if this new method was a feasible and accurate approach to tracking and predicting surface and subsurface landslide movement. While this approach and method is still relatively new, the results from the survey showed that the displacement of the landslide could be accurately measured and the movement of the landslide could be accurately tracked --Abstract, page iii

    Feasibility studies of terrestrial laser scanning in Coastal Geomorphology, Agronomy, and Geoarchaeology

    Get PDF
    Terrestrial laser scanning (TLS) is a newer, active method of remote sensing for the automatic detection of 3D coordinate points. This method has been developed particularly during the last 20 years, in addition to airborne and mobile laser scanning methods. All these methods use laser light and additional angle measurements for the detection of distances and directions. Thus, several thousands to hundreds of thousands of polar coordinates per second can be measured directly by an automatic deflection of laser beams. For TLS measurements, the coordinates and orientation of the origin of the laser beam can be determined to register different scan positions in a common coordinate system. These measurements are usually conducted by Global Navigation Satellite Systems or total station surveying, but also identical points can be used and data driven methods are possible. Typically, accuracies and point densities of a few centimetres to a few millimetres are achieved depending on the method. The derived 3D point clouds contain millions of points, which can be evaluated in post-processing stages by symbolic or data-driven methods. Besides the creation of digital surface and terrain models, laser scanning is used in many areas for the determination of 3D objects, distances, dimensions, and volumes. In addition, changes can be determined by multi-temporal surveys. The terrestrial laser scanner Riegl LMS Z-420i was used in this work in combination with the Differential Global Positioning System system Topcon Hiper Pro, based on Real Time Kinematic (RTK-DGPS). In addition to the direct position determination of the laser scanner, the position of a self-developed reflector on a ranging pole was measured by the RTK-DGPS system to accurately derive the orientation of each measured point cloud. Moreover, the scanner is equipped with an additional, mounted camera Nikon D200 to capture oriented pictures. These pictures allow colouring the point cloud in true colours and thus allow a better orientation. Furthermore, the pictures can be used for the extraction of detailed 3D information and for texturing the 3D objects. In one of the post-processing steps, the direct georeferencing by RTK-DGPS data was refined using the Multi Station Adjustment, which employs the Iterative Closest Point algorithm. According to the specific objectives, the point clouds were then filtered, clipped, and processed to establish 3D objects for further usage. In this dissertation, the feasibility of the method has been analysed by investigating the applicability of the system, the accuracy, and the post-processing methods by means of case studies from the research areas of coastal geomorphology, agronomy, and geoarchaeology. In general, the measurement system has been proven to be robust and suitable for field surveys in all cases. The surveys themselves, including the selected georeferencing approach, were conducted quickly and reliably. With the refinement of the Multi Station Adjustment a relative accuracy of about 1 cm has been achieved. The absolute accuracy is about 1.5 m, limited by the RTK-DGPS system, which can be enhanced through advanced techniques. Specific post-processing steps have been conducted to solve the specific goals of each research area. The method was applied for coastal geomorphological research in western Greece. This part of the study deals with 3D reconstructed volumes and corresponding masses of boulders, which have been dislocated by high energy events. The boulder masses and other parameters, such as the height and distance to the current sea level, have been used in wave transport equations for the calculation of minimum wave heights and velocities of storm and tsunami scenarios and were compared to each other. A significant increase in accuracy of 30% on average compared with the conventional method of simply measuring the axes was detected. For comparison, annual measurements at seven locations in western Greece were performed over three years (2009-2011) and changes in the sediment budget were successfully detected. The base points of the RTK-DGPS system were marked and used every year. Difficulties arose in areas with high surface roughness and slight changes in the annual position of the laser scanner led to an uneven point density and generated non-existing changes. For this reason, all results were additionally checked by pictures of the mounted camera and a direct point cloud comparison. Similarly, agricultural plants were surveyed by a multi-temporal approach on a field over two years using the stated method. Plant heights and their variability within a field were successfully determined using Crop Surface Models, which represent the top canopy. The spatial variability of plant development was compared with topographic parameters as well as soil properties and significant correlations were found. Furthermore, the method was carried out with four different types of sugar-beet at a higher resolution, which was achieved by increasing the height of the measurement position. The differences between the crop varieties and their growth behaviour under drought stress were represented by the derived plant heights and a relation to biomass and the Leaf Area Index was successfully established. With regard to geoarchaeological investigations in Jordan, Spain, and Egypt, the method was used in order to document respective sites and specific issues, such as proportions and volumes derived from the generated 3D models were solved. However, a full coverage of complexly structured sites, like caves or early settlements is partially prevented by the oversized scanner, slow measurement rates, and the necessary minimum measurement distance. The 3D data can be combined with other data for further research by the common georeference. The selected method has been found suitable to create accurate 3D point clouds and corresponding 3D models that can be used in accordance with the respective research problem. The feasibility of the TLS method for various issues of the case studies was proven, but limitations of the used system have also been detected and are described in the respective chapters. Further methods or other, newer TLS systems may be better suited for specific cases

    Direct Georeferencing of Stationary LiDAR

    No full text
    Unlike mobile survey systems, stationary survey systems are given very little direct georeferencing attention. Direct Georeferencing is currently being used in several mobile applications, especially in terrestrial and airborne LiDAR systems. Georeferencing of stationary terrestrial LiDAR scanning data, however, is currently performed indirectly through using control points in the scanning site. The indirect georeferencing procedure is often troublesome; the availability of control stations within the scanning range is not always possible. Also, field procedure can be laborious and involve extra equipment and target setups. In addition, the conventional method allows for possible human error due to target information bookkeeping. Additionally, the accuracy of this procedure varies according to the quality of the control used. By adding a dual GPS antenna apparatus to the scanner setup, thereby supplanting the use of multiple ground control points scattered throughout the scanning site, we mitigate not only the problems associated with indirect georeferencing but also induce a more efficient set up procedure while maintaining sufficient precision. In this paper, we describe a new method for determining the 3D absolute orientation of LiDAR point cloud using GPS measurements from two antennae firmly mounted on the optical head of a stationary LiDAR system. In this paper, the general case is derived where the orientation angles are not small; this case completes the theory of stationary LiDAR direct georeferencing. Simulation and real world field experimentation of the prototype implementation suggest a precision of about 0.05 degrees (~1 milli-radian) for the three orientation angles
    corecore