1,860 research outputs found

    Nondegeneracy and Stability of Antiperiodic Bound States for Fractional Nonlinear Schr\"odinger Equations

    Full text link
    We consider the existence and stability of real-valued, spatially antiperiodic standing wave solutions to a family of nonlinear Schr\"odinger equations with fractional dispersion and power-law nonlinearity. As a key technical result, we demonstrate that the associated linearized operator is nondegenerate when restricted to antiperiodic perturbations, i.e. that its kernel is generated by the translational and gauge symmetries of the governing evolution equation. In the process, we provide a characterization of the antiperiodic ground state eigenfunctions for linear fractional Schr\"odinger operators on R\mathbb{R} with real-valued, periodic potentials as well as a Sturm-Liouville type oscillation theory for the higher antiperiodic eigenfunctions.Comment: 46 pages, 2 figure

    Linear Asymptotic Stability and Modulation Behavior near Periodic Waves of the Korteweg-de Vries Equation

    Full text link
    We provide a detailed study of the dynamics obtained by linearizing the Korteweg-de Vries equation about one of its periodic traveling waves, a cnoidal wave. In a suitable sense, linearly analogous to space-modulated stability, we prove global-in-time bounded stability in any Sobolev space, and asymptotic stability of dispersive type. Furthermore, we provide both a leading-order description of the dynamics in terms of slow modulation of local parameters and asymptotic modulation systems and effective initial data for the evolution of those parameters. This requires a global-in-time study of the dynamics generated by a non normal operator with non constant coefficients. On the road we also prove estimates on oscillatory integrals particularly suitable to derive large-time asymptotic systems that could be of some general interest

    Dispersive and diffusive-dispersive shock waves for nonconvex conservation laws

    Get PDF
    We consider two physically and mathematically distinct regularization mechanisms of scalar hyperbolic conservation laws. When the flux is convex, the combination of diffusion and dispersion are known to give rise to monotonic and oscillatory traveling waves that approximate shock waves. The zero-diffusion limits of these traveling waves are dynamically expanding dispersive shock waves (DSWs). A richer set of wave solutions can be found when the flux is non-convex. This review compares the structure of solutions of Riemann problems for a conservation law with non-convex, cubic flux regularized by two different mechanisms: 1) dispersion in the modified Korteweg--de Vries (mKdV) equation; and 2) a combination of diffusion and dispersion in the mKdV-Burgers equation. In the first case, the possible dynamics involve two qualitatively different types of DSWs, rarefaction waves (RWs) and kinks (monotonic fronts). In the second case, in addition to RWs, there are traveling wave solutions approximating both classical (Lax) and non-classical (undercompressive) shock waves. Despite the singular nature of the zero-diffusion limit and rather differing analytical approaches employed in the descriptions of dispersive and diffusive-dispersive regularization, the resulting comparison of the two cases reveals a number of striking parallels. In contrast to the case of convex flux, the mKdVB to mKdV mapping is not one-to-one. The mKdV kink solution is identified as an undercompressive DSW. Other prominent features, such as shock-rarefactions, also find their purely dispersive counterparts involving special contact DSWs, which exhibit features analogous to contact discontinuities. This review describes an important link between two major areas of applied mathematics, hyperbolic conservation laws and nonlinear dispersive waves.Comment: Revision from v2; 57 pages, 19 figure
    • …
    corecore