44,061 research outputs found

    Hilbert space renormalization for the many-electron problem

    Get PDF
    Renormalization is a powerful concept in the many-body problem. Inspired by the highly successful density matrix renormalization group (DMRG) algorithm, and the quantum chemical graphical representation of configuration space, we introduce a new theoretical tool: Hilbert space renormalization, to describe many-electron correlations. While in DMRG, the many-body states in nested Fock subspaces are successively renormalized, in Hilbert space renormalization, many-body states in nested Hilbert subspaces undergo renormalization. This provides a new way to classify and combine configurations. The underlying wavefunction ansatz, namely the Hilbert space matrix product state (HS-MPS), has a very rich and flexible mathematical structure. It provides low-rank tensor approximations to any configuration interaction (CI) space through restricting either the 'physical indices' or the coupling rules in the HS-MPS. Alternatively, simply truncating the 'virtual dimension' of the HS-MPS leads to a family of size-extensive wave function ansaetze that can be used efficiently in variational calculations. We make formal and numerical comparisons between the HS-MPS, the traditional Fock-space MPS used in DMRG, and traditional CI approximations. The analysis and results shed light on fundamental aspects of the efficient representation of many-electron wavefunctions through the renormalization of many-body states.Comment: 23 pages, 14 figures, The following article has been submitted to The Journal of Chemical Physic

    Many-Body Expanded Full Configuration Interaction. I. Weakly Correlated Regime

    Full text link
    Over the course of the past few decades, the field of computational chemistry has managed to manifest itself as a key complement to more traditional lab-oriented chemistry. This is particularly true in the wake of the recent renaissance of full configuration interaction (FCI)-level methodologies, albeit only if these can prove themselves sufficiently robust and versatile to be routinely applied to a variety of chemical problems of interest. In the present series of works, performance and feature enhancements of one such avenue towards FCI-level results for medium to large one-electron basis sets, the recently introduced many-body expanded full configuration interaction (MBE-FCI) formalism [J. Phys. Chem. Lett., 8, 4633 (2017)], will be presented. Specifically, in this opening part of the series, the capabilities of the MBE-FCI method in producing near-exact ground state energies for weakly correlated molecules of any spin multiplicity will be demonstrated.Comment: 38 pages, 7 tables, 3 figures, 1 SI attached as an ancillary fil

    Multiconfigurational Short-Range Density-Functional Theory for Open-Shell Systems

    Full text link
    Many chemical systems cannot be described by quantum chemistry methods based on a singlereference wave function. Accurate predictions of energetic and spectroscopic properties require a delicate balance between describing the most important configurations (static correlation) and obtaining dynamical correlation efficiently. The former is most naturally done through a multiconfigurational (MC) wave function, whereas the latter can be done by, e.g., perturbation theory. We have employed a different strategy, namely, a hybrid between multiconfigurational wave functions and density-functional theory (DFT) based on range separation. The method is denoted by MC short-range (sr) DFT and is more efficient than perturbative approaches as it capitalizes on the efficient treatment of the (short-range) dynamical correlation by DFT approximations. In turn, the method also improves DFT with standard approximations through the ability of multiconfigurational wave functions to recover large parts of the static correlation. Until now, our implementation was restricted to closed-shell systems, and to lift this restriction, we present here the generalization of MC-srDFT to open-shell cases. The additional terms required to treat open-shell systems are derived and implemented in the DALTON program. This new method for open-shell systems is illustrated on dioxygen and [Fe(H2O)6]3+.Comment: 37 pages, 3 figures, 4 tables, 1 appendix and 79 references Changes in v2: 1) Appendix B and reference 81 removed 2) Removed dublicated reference and corrected reference 31. 3) Added spin-charge cross terms to GGA (Appendix A). Code changed accordingly and GGA results recalculated. All GGA results are revised -only small modifications observed. Conclusions are unchange

    Factorization of point configurations, cyclic covers and conformal blocks

    Full text link
    We describe a relation between the invariants of nn ordered points in PdP^d and of points contained in a union of linear subspaces Pd1Pd2PdP^{d1}\cup P^{d2} \subset P^d. This yields an attaching map for GIT quotients parameterizing point configurations in these spaces, and we show that it respects the Segre product of the natural GIT polarizations. Associated to a configuration supported on a rational normal curve is a cyclic cover, and we show that if the branch points are weighted by the GIT linearization and the rational normal curve degenerates, then the admissible covers limit is a cyclic cover with weights as in this attaching map. We find that both GIT polarizations and the Hodge class for families of cyclic covers yield line bundles on Mˉ0,n\bar{M}_{0,n} with functorial restriction to the boundary. We introduce a notion of divisorial factorization, abstracting an axiom from rational conformal field theory, to encode this property and show that it determines the isomorphism class of these line bundles. As an application, we obtain a unified, geometric proof of two recent results on conformal block bundles, one by Fedorchuk and one by Gibney and the second author.Comment: 17 pages, 3 figure

    Second-Order Self-Consistent-Field Density-Matrix Renormalization Group

    Full text link
    We present a matrix-product state (MPS)-based quadratically convergent density-matrix renormalization group self-consistent-field (DMRG-SCF) approach. Following a proposal by Werner and Knowles (JCP 82, 5053, (1985)), our DMRG-SCF algorithm is based on a direct minimization of an energy expression which is correct to second-order with respect to changes in the molecular orbital basis. We exploit a simultaneous optimization of the MPS wave function and molecular orbitals in order to achieve quadratic convergence. In contrast to previously reported (augmented Hessian) Newton-Raphson and super-configuration-interaction algorithms for DMRG-SCF, energy convergence beyond a quadratic scaling is possible in our ansatz. Discarding the set of redundant active-active orbital rotations, the DMRG-SCF energy converges typically within two to four cycles of the self-consistent procedureComment: 40 pages, 5 figures, 3 table

    Can Density Matrix Embedding Theory with the Complete Activate Space Self-Consistent Field Solver Describe Single and Double Bond Breaking in Molecular Systems?

    Full text link
    Density matrix embedding theory (DMET) [Phys. Rev. Lett.2012, 109, 186404] has been demonstrated as an efficient wave-function-based embedding method to treat extended systems. Despite its success in many quantum lattice models, the extension of DMET to real chemical systems has been tested only on selected cases. Herein, we introduce the use of the complete active space self-consistent field (CASSCF) method as a correlated impurity solver for DMET, leading to a method called CAS-DMET. We test its performance in describing the dissociation of a H-H single bond in a H10 ring model system and an N=N double bond in azomethane (CH3-N=N-CH3) and pentyldiazene (CH3(CH2)4-N=NH). We find that the performance of CAS-DMET is comparable to CASSCF with different active space choices when single-embedding DMET corresponding to only one embedding problem for the system is used. When multiple embedding problems are used for the system, the CAS-DMET is in a good agreement with CASSCF for the geometries around the equilibrium, but not in equal agreement at bond dissociation.Comment: 28 pages, 9 figures, TOC graphi

    Orbital Optimization in the Active Space Decomposition Model

    Full text link
    We report the derivation and implementation of orbital optimization algorithms for the active space decomposition (ASD) model, which are extensions of complete active space self-consistent field (CASSCF) and its occupation-restricted variants in the conventional multiconfiguration electronic-structure theory. Orbital rotations between active subspaces are included in the optimization, which allows us to unambiguously partition the active space into subspaces, enabling application of ASD to electron and exciton dynamics in covalently linked chromophores. One- and two-particle reduced density matrices, which are required for evaluation of orbital gradient and approximate Hessian elements, are computed from the intermediate tensors in the ASD energy evaluation. Numerical results on 4-(2-naphthylmethyl)-benzaldehyde and [36_6]cyclophane and model Hamiltonian analyses of triplet energy transfer processes in the Closs systems are presented. Furthermore model Hamiltonians for hole and electron transfer processes in anti-[2.2](1,4)pentacenophane are studied using an occupation-restricted variant
    corecore