5 research outputs found

    Design Techniques for Direct Digital Synthesis Circuits with Improved Frequency Accuracy over Wide Frequency Ranges

    Get PDF
    Recently, there are increasing interests in impedance sensors for various applications. Direct digital synthesis (DDS) circuits are commonly used in such sensor circuits for generating stimulus signals, due to the advantages of accurate frequency control, drift-free performance, etc. Previously reported DDS circuits for sensor applications typically maintain superb frequency accuracy within relatively small frequency ranges. This paper investigates techniques to improve frequency accuracy over wide frequency ranges. In addition, it presents an analytical framework to estimate the signal to noise ratio (SNR) of the generated signal and derives guidelines for optimizing DDS circuit configurations. Both simulation and hardware measurement results are presented to validate the derived SNR estimation equation as well as the developed frequency accuracy enhancement technique

    Δ-Σ και MSLA Διαμορφωτές Σήματος

    Get PDF
    Σκοπός της παρούσας διπλωματικής, είναι αρχικά η κατανόηση των εννοιών που αφορούν την μετατροπή σήματος από τον ψηφιακό κόσμο στον αναλογικό, την υπερδειγματοληψία, την διαμόρφωση θορύβου και τα σφάλματα κβαντισμού. Στη συνέχεια γίνεται εισαγωγή και ανάλυση στους Δέλτα - Σίγμα διαμορφωτές σήματος πρώτου και δευτέρου βαθμού καθώς και σε συγκρίσεις μεταξύ τους. Έπειτα επεξηγείται ο αλγόριθμος MSLA και η εφαρμογή του στους Δ – Σ διαμορφωτές και τέλος παρατίθενται αποτελέσματα και ευρήματα του MSLA σε διάφορες εφαρμογές μέσω προσομοιώσεων.The purpose of this thesis is to primarily understand the basic concepts of signal conversion and processing from the digital to the analog world, oversampling, noise shaping and errors in quantization. Thereafter, a brief introduction and analysis on Sigma Delta modulators of first and second order as well as the comparison between them is being shown. Then the MSLA algorithm and its application in Delta Sigma modulators are explained and finally various applications through extensive simulations are presented

    Direct all-digital frequency synthesis techniques, spurs suppression, and deterministic jitter correction

    No full text

    Design and Implementation of a Re-Configurable Arbitrary Signal Generator and Radio Frequency Spectrum Analyser

    Get PDF
    This research is focused on the design, simulation and implementation of a reconfigurable arbitrary signal generator and the design, simulation and implementation of a radio frequency spectrum analyser based on digital signal processing. Until recently, Application Specific Integrated Circuits (ASICs) were used to produce high performance re-configurable function and arbitrary waveform generators with comprehensive modulation capabilities. However, that situation is now changing with the availability of advanced but low cost Field Programmable Gate Arrays (FPGAs), which could be used as an alternative to ASICs in these applications. The availability of high performance FPGA families opens up the opportunity to compete with ASIC solutions at a fraction of the development cost of an ASIC solution. A fast digital signal processing algorithm for digital waveform generation, using primarily but not limited to Direct Digital Synthesis (DDS) technologies, developed and implemented in a field-configurable logic, with control provided by an embedded microprocessor replacing a high cost ASIC design appeared to be a very attractive concept. This research demonstrates that such a concept is feasible in its entirety. A fully functional, low-complexity, low cost, pulse, Gaussian white noise and DDS based function and arbitrary waveform generator, capable of being amplitude, frequency and phase modulated by an internally generated or external modulating signal was implemented in a low-cost FPGA. The FPGA also included the capabilities to perform pulse width modulation and pulse delay modulation on pulse waveforms. Algorithms to up-convert the sampling rate of the external modulating signal using Cascaded Integrator Comb (CIC) filters and using interpolation method were analysed. Both solutions were implemented to compare their hardware complexities. Analysis of generating noise with user-defined distribution is presented. The ability of triggering the generator by an internally generated or an external event to generate a burst of waveforms where the time between the trigger signal and waveform output is fixed was also implemented in the FPGA. Finally, design of interface to a microprocessor to provide control of the versatile waveform generator was also included in the FPGA. This thesis summarises the literature, design considerations, simulation and implementation of the generator design. The second part of the research is focused on radio frequency spectrum analysis based on digital signal processing. Most existing spectrum analysers are analogue in nature and their complexity increases with frequency. Therefore, the possibility of using digital techniques for spectrum analysis was considered. The aim was to come up with digital system architecture for spectrum analysis and to develop and implement the new approach on a suitable digital platform. This thesis analyses the current literature on shifting algorithms to remove spurious responses and highlights its drawbacks. This thesis also analyses existing literature on quadrature receivers and presents novel adaptation of the existing architectures for application in spectrum analysis. A wide band spectrum analyser receiver with compensation for gain and phase imbalances in the Radio Frequency (RF) input range, as well as compensation for gain and phase imbalances within the Intermediate Frequency (IF) pass band complete with Resolution Band Width (RBW) filtering, Video Band Width (VBW) filtering and amplitude detection was implemented in a low cost FPGA. The ability to extract the modulating signal from a frequency or amplitude modulated RF signal was also implemented. The same family of FPGA used in the generator design was chosen to be the digital platform for this design. This research makes arguments for the new architecture and then summarises the literature, design considerations, simulation and implementation of the new digital algorithm for the radio frequency spectrum analyser

    Pathlength calibration of integrating sphere based gas cells

    Get PDF
    Integrating sphere based multipass cells, unlike typical multipass cells, have an optically rough reflective surface, which produces multiple diffuse reflections of varying lengths. This has significant advantages, including negating scattering effects in turbid samples, removing periodicity of waves (often the cause of etalon fringes), and simple cell alignment. However, the achievable pathlength is heavily dependent on the sphere wall reflectivity. This presents a challenge for ongoing in-situ measurements as potential sphere wall contamination will cause a reduction in mean reflectivity and thus a deviation from the calibrated pathlength. With this in mind, two techniques for pathlength calibration of an integrating sphere were investigated. In both techniques contamination was simulated by creating low reflectivity tabs e.g. ≈5x7mm, that could be introduced into the sphere (and removed) in a repeatable manner. For the first technique, a four beam configuration, adapted from a turbidity method used in the water industry, was created using a 5cm diameter sphere with an effective pathlength of 1m. Detection of methane gas was carried out at 1650nm. A mathematical model was derived that corrected for pathlength change due to sphere wall contamination in situ, thus enabling gas measurements to continue to be made. For example, for a concentration of 1500ppm of methane where 1.2% of the sphere wall was contaminated with a low reflectivity material, the absorption measurement error was reduced from 41% to 2% when the model was used. However some scenarios introduced errors into the correction, including contamination of the cell windows which introduced errors of, for example, up to 70% if the particulate contamination size was on the order of millimetres. The second technique used high frequency intensity modulation with phase detection to achieve pathlength calibration. Two types of modulation were tested i.e. sinusoidal modulation and pulsed modulation. The technique was implemented using an integrated circuit board which allowed for generation of modulation signals up to 150MHz with synchronous signal processing. Pathlength calibration was achieved by comparison of iii the phase shift for a known length with the measured phase shift for the integrating sphere with unknown pathlength over a range of frequencies. The results for both modulation schemes showed that, over the range of frequencies detected, 3-48MHz, the resultant phase shift varied as an arctangent function for an integrating sphere. This differed from traditional single passes where frequency and phase have a linear relationship
    corecore