468 research outputs found

    Diophantine sets of polynomials over algebraic extensions of the rationals

    Get PDF
    Let L be a recursive algebraic extension of Q. Assume that, given alpha is an element of L, we can compute the roots in L of its minimal polynomial over Q and we can determine which roots are Aut(L)-conjugate to alpha. We prove that there exists a pair of polynomials that characterizes the Aut(L)-conjugates of alpha, and that these polynomials can be effectively computed. Assume furthermore that L can be embedded in R, or in a finite extension of Q(p) (with p an odd prime). Then we show that subsets of L[X](k) that are recursively enumerable for every recursive presentation of L[X], are diophantine over L[X]

    Diophantine Sets over Polynomial Rings and Hilbert's Tenth Problem for Function Fields

    Get PDF
    In 1900, the German mathematician David Hilbert proposed a list of 23 unsolved mathematical problems. In his Tenth Problem, he asked to find an algorithm to decide whether or not a given diophantine equation has a solution (in integers). Hilbert's Tenth Problem has a negative solution, in the sense that such an algorithm does not exist. This was proven in 1970 by Y. Matiyasevich, building on earlier work by M. Davis, H. Putnam and J. Robinson. Actually, this result was the consequence of something much stronger: the equivalence of recursively enumerable and diophantine sets (we will refer to this result as "DPRM"). The first new result in the thesis is about Hilbert's Tenth Problem for function fields of curves over valued fields in characteristic zero. Under some conditions on the curve and the valuation, we have undecidability for diophantine equations over the function field of the curve. One interesting new case are function fields of curves over formal Laurent series. The proof relies on the method with two elliptic curves as developed by K. H. Kim and F. Roush and generalised by K. Eisenträger. Additionally, the proof uses the theory quadratic forms and valuations. And especially for non-rational function fields there is some algebraic geometry coming in. The second type of results establishes the equivalence of recursively enumerable and diophantine sets in certain polynomial rings. The most important is the one-variable polynomial ring over a finite field. This is the first generalisation of DPRM in positive characteristic. My proof uses the structure of finite fields and in particular the properties of cyclotomic polynomials. In the last chapter, this result for polynomials over finite fields is generalised to polynomials over recursive algebraic extensions of a finite field. For these rings we don't have a good definition of "recursively enumerable" set, therefore we consider sets which are recursively enumerable for every recursive presentation. We show that these are exactly the diophantine sets. In addition to infinite extensions of finite fields, we also show the analogous result for polynomials over a ring of integers in a recursive totally real algebraic extension of the rationals. This generalises results by J. Denef and K. Zahidi

    Positivity Problems for Low-Order Linear Recurrence Sequences

    Full text link
    We consider two decision problems for linear recurrence sequences (LRS) over the integers, namely the Positivity Problem (are all terms of a given LRS positive?) and the Ultimate Positivity Problem} (are all but finitely many terms of a given LRS positive?). We show decidability of both problems for LRS of order 5 or less, with complexity in the Counting Hierarchy for Positivity, and in polynomial time for Ultimate Positivity. Moreover, we show by way of hardness that extending the decidability of either problem to LRS of order 6 would entail major breakthroughs in analytic number theory, more precisely in the field of Diophantine approximation of transcendental numbers

    Heights and quadratic forms: on Cassels' theorem and its generalizations

    Full text link
    In this survey paper, we discuss the classical Cassels' theorem on existence of small-height zeros of quadratic forms over Q and its many extensions, to different fields and rings, as well as to more general situations, such as existence of totally isotropic small-height subspaces. We also discuss related recent results on effective structural theorems for quadratic spaces, as well as Cassels'-type theorems for small-height zeros of quadratic forms with additional conditions. We conclude with a selection of open problems.Comment: 16 pages; to appear in the proceedings of the BIRS workshop on "Diophantine methods, lattices, and arithmetic theory of quadratic forms", to be published in the AMS Contemporary Mathematics serie

    Report on some recent advances in Diophantine approximation

    Get PDF
    A basic question of Diophantine approximation, which is the first issue we discuss, is to investigate the rational approximations to a single real number. Next, we consider the algebraic or polynomial approximations to a single complex number, as well as the simultaneous approximation of powers of a real number by rational numbers with the same denominator. Finally we study generalisations of these questions to higher dimensions. Several recent advances have been made by B. Adamczewski, Y. Bugeaud, S. Fischler, M. Laurent, T. Rivoal, D. Roy and W.M. Schmidt, among others. We review some of these works.Comment: to be published by Springer Verlag, Special volume in honor of Serge Lang, ed. Dorian Goldfeld, Jay Jorgensen, Dinakar Ramakrishnan, Ken Ribet and John Tat

    Heights and totally pp-adic numbers

    Full text link
    We study the behavior of canonical height functions h^f\widehat{h}_f, associated to rational maps ff, on totally pp-adic fields. In particular, we prove that there is a gap between zero and the next smallest value of h^f\widehat{h}_f on the maximal totally pp-adic field if the map ff has at least one periodic point not contained in this field. As an application we prove that there is no infinite subset XX in the compositum of all number fields of degree at most dd such that f(X)=Xf(X)=X for some non-linear polynomial ff. This answers a question of W. Narkiewicz from 1963.Comment: minor changes: rewording and reference update
    • …
    corecore