4 research outputs found

    Fixed Linear Crossing Minimization by Reduction to the Maximum Cut Problem

    Get PDF
    Many real-life scheduling, routing and locating problems can be formulated as combinatorial optimization problems whose goal is to find a linear layout of an input graph in such a way that the number of edge crossings is minimized. In this paper, we study a restricted version of the linear layout problem where the order of vertices on the line is fixed, the so-called fixed linear crossing number problem (FLCNP). We show that this NP-hard problem can be reduced to the well-known maximum cut problem. The latter problem was intensively studied in the literature; practically efficient exact algorithms based on the branch-and-cut technique have been developed. By an experimental evaluation on a variety of graphs, we prove that using this reduction for solving FLCNP compares favorably to earlier branch-and-bound algorithms

    Stack-number is not bounded by queue-number

    Full text link
    We describe a family of graphs with queue-number at most 4 but unbounded stack-number. This resolves open problems of Heath, Leighton and Rosenberg (1992) and Blankenship and Oporowski (1999)

    On Linear Layouts of Graphs

    Get PDF
    In a total order of the vertices of a graph, two edges with no endpoint in common can be \emphcrossing, \emphnested, or \emphdisjoint. A \emphk-stack (respectively, \emphk-queue, \emphk-arch) \emphlayout of a graph consists of a total order of the vertices, and a partition of the edges into k sets of pairwise non-crossing (non-nested, non-disjoint) edges. Motivated by numerous applications, stack layouts (also called \emphbook embeddings) and queue layouts are widely studied in the literature, while this is the first paper to investigate arch layouts.\par Our main result is a characterisation of k-arch graphs as the \emphalmost (k+1)-colourable graphs; that is, the graphs G with a set S of at most k vertices, such that G S is (k+1)-colourable.\par In addition, we survey the following fundamental questions regarding each type of layout, and in the case of queue layouts, provide simple proofs of a number of existing results. How does one partition the edges given a fixed ordering of the vertices? What is the maximum number of edges in each type of layout? What is the maximum chromatic number of a graph admitting each type of layout? What is the computational complexity of recognising the graphs that admit each type of layout?\par A comprehensive bibliography of all known references on these topics is included. \pa
    corecore