
Fixed Linear Crossing Minimization by
Reduction to the Maximum Cut Problem ?

Christoph Buchheim1 and Lanbo Zheng2,3

1 Computer Science Department, University of Cologne, Germany.
buchheim@informatik.uni-koeln.de

2 School of Information Technologies, University of Sydney, Australia.
3 IMAGEN program, National ICT Australia.

lzheng@it.usyd.edu.au

Abstract. Many real-life scheduling, routing and location problems can
be formulated as combinatorial optimization problems whose goal is to
find a linear layout of an input graph in such a way that the number of
edge crossings is minimized. In this paper, we study a restricted version of
the linear layout problem where the order of vertices on the line is fixed,
the so-called fixed linear crossing number problem (FLCNP). We show
that this NP-hard problem can be reduced to the well-known maximum
cut problem. The latter problem was intensively studied in the literature;
efficient exact algorithms based on the branch-and-cut technique have
been developed. By an experimental evaluation on a variety of graphs,
we show that using this reduction for solving FLCNP compares favorably
to earlier branch-and-bound algorithms.

1 Introduction

For a given simple graph G = (V,E) with vertex set V and edge set E, a linear
embedding of G is a special type of embedding in which vertices of V are placed
on a horizontal line L and edges are drawn as semicircles above or below L; see
Fig. 1. This type of drawing was first introduced by Nicholson [12] in order to
develop a heuristic algorithm for the generalNP-complete crossing minimization
problem [4]. However, Masuda et al. proved that it is still NP-hard to find a
linear embedding of a given graph with a minimum number of crossings, even if
the ordering of vertices on L is predetermined [10]. The latter problem is called
the fixed linear crossing number problem (FLCNP).

Crossing minimization for linear embeddings has important applications in
different areas such as sorting permutations [6], fault tolerant VLSI design [13],
complexity theory [3], and compact graph encodings [11]. Moreover, the problem
FLCNP is of general interest in graph drawing and information visualization,
where the number of edge crossings has a big effect on the readability of graph
layout [2]. It was also shown to be a subproblem in communications network
management graphics facilities such as CNMgraf [5]. Sorting with parallel stacks

? Partially supported by the Marie Curie RTN ADONET 504438 funded by the EU

v1 v2 v3 v4 v5 v6 v7 v8

Fig. 1. A linear embedding

is similar to FLCNP where the layout of vertices is fixed, although the objective
is to find a layout with no crossings at all.

Recently, heuristic methods, as well as exact algorithms, have been proposed
to find optimal or near-optimal solutions of linear layout problems. Cimikowski [1]
presented different powerful heuristics as well as an exact branch-and-bound al-
gorithm for FLCNP. In the worst case, the latter enumerates all possible assign-
ments of edges to the two sides of L (up to symmetry). However, the idea of
branch-and-bound is to use known bounds on the objective function in order to
skip most feasible solutions during the enumeration. Cimikowski’s algorithm is
able to find exact solutions for graphs with up to 50 edges.

In this paper, we introduce a new exact algorithm for the problem FLCNP
that is based on a reduction to the maximum cut problem (MAXCUT). The same
reduction yields a simple test for fixed linear planarity. Computational results
for our approach are compared to those obtained with the exact algorithm of [1],
on exactly the same test data and equipment. Our approach yields a remarkable
improvement in terms of computational efficiency.

This paper is organized as follows. In Sect. 2, the problem under consideration
is formalized and necessary notation is introduced. In Sect. 3, we describe the
reduction from FLCNP to MAXCUT and present a corresponding optimization
algorithm. Experimental results are analyzed in Sect. 4, and Sect. 5 concludes.

2 Preliminaries

Throughout this paper, we consider an undirected, simple graph G = (V,E)
with vertex set V and edge set E. A vertex ordering (or vertex permutation)
of G is a bijection δ : V → {1, 2, . . . , |V |}. For a pair of vertices (v, w), we will
shortly write v < w instead of δ(v) < δ(w).

In a fixed linear embedding of G, we assume that the vertices of G are placed
on a straight horizontal line L according to a fixed vertex ordering. Moreover,
each edge is drawn as a semicircle; see Fig. 1. Consequently, edges may be routed
above or below L but never cross L. Notice that three edges cannot intersect in
one point unless it is a common endpoint.

For a given graph G and vertex ordering δ, a pair of edges e1 = (v1, w1)
and e2 = (v2, w2) is potentially crossing if e1 and e2 cross each other when
routed on the same side of L. Clearly, e1 and e2 are potentially crossing if and
only if v1 < v2 < w1 < w2 or v2 < v1 < w2 < w1.

In this paper, we are interested in the number of crossings in fixed linear
embeddings of G. There is a crossing between e1 and e2 if, and only if:

– e1 and e2 are potentially crossing, and
– e1 and e2 are embedded on the same side of L.

We are going to address the following optimization problem:

Fixed linear crossing number problem (FLCNP): Given a graph G = (V,E)
with a fixed vertex ordering, find a corresponding linear embedding of G with a
minimum number of edge crossings.

It is easy to see that the number of edge crossings in a linear embedding only
depends on the order of vertices and the sides to which the edges are assigned, but
not on the exact positions of the vertices. In particular, as the vertex ordering is
fixed as part of the input of FLCNP, the only remaining choice is whether edges
are drawn above or below the line L. Thus, with respect to the crossing number,
there are essentially 2|E| different fixed linear embeddings of G. Nevertheless,
the problem FLCNP was shown to be NP-hard by Masuda et al. [10].

3 A New Algorithm

The exact algorithm used by Cimikowski [1] to solve the problem FLCNP is
based on the branch-and-bound technique: basically, all possible solutions of the
problem are enumerated. The set of solutions is given by a binary enumeration
tree, where each inner node corresponds to a decision whether a chosen edge
is drawn above or below the horizontal line. In the worst case, an exponential
number of solutions has to be enumerated. However, the basic idea of branch-
and-bound is the pruning of branches in this tree: at some node of the tree,
a certain set of edges is already fixed. According to this information, one can
derive a lower bound on the number of crossings subject to these fixed edges. If
this lower bound is at most as good as a feasible solution that has already been
found, e.g., by some heuristics, it is clear that the considered subtree cannot
contain a better solution, so it does not have to be explored.

In the following, we describe a different approach for solving FLCNP exactly.
We show that the problem is, in fact, a special case of the well-known MAXCUT
problem; see Sect. 3.1. The latter has been studied intensively in the literature. In
particular, branch-and-cut algorithms have been developed; see Sect. 3.2, which
we use for our experimental evaluation presented in Sect. 4.

3.1 Reduction to MAXCUT

In this section, we show that the problem FLCNP can easily be reduced to the
maximum cut problem given as follows:

Maximum Cut Problem (MAXCUT): Given an undirected graph G′ = (V ′, E′),
find a partition of V ′ into disjoint sets V1 and V2 such that the number of edges
from E′ that have one endpoint in V1 and one endpoint in V2 is maximal.

For an instance of FLCNP, i.e., a given graph G = (V,E) with a fixed vertex
permutation, we construct the associated conflict graph G′ = (V ′, E′) as follows:
the vertices of G′ are in one-to-one correspondence to the edges of G, i.e., V ′ = E.
Two vertices of G′ corresponding to edges e1, e2 ∈ E are adjacent if, and only
if, e1 and e2 are potentially crossing. See Fig. 2 for an illustration.

v1 v2 v3 v4 v5 v6 v7 v8

e 1

e 2

e 4

e 3

e 5
e 6

e7 e8

e9 e 10 e 11

v1 '

v2 '

v3 '

v4 '

v5 ' v6 '

v7 '

v8 '

v9 '

v1 0 'v11 '

Fig. 2. The graph G and its associated conflict graph G′

Definition 1. Let G be a graph with a fixed vertex permutation. Given a vertex
partition (V1, V2) of its conflict graph G′, the associated cut embedding is the
fixed linear embedding of G where edges corresponding to V1 and V2 are embedded
to the half spaces above and below the vertex line, respectively.

Theorem 1. Consider a partition (V1, V2) of V ′. Then the corresponding cut
embedding is a fixed linear embedding of G with a minimum number of crossings
if, and only if, (V1, V2) is a maximum cut in G′.

Proof. Let F ′ be the set of edges in G′ with one endpoint in V1 and one endpoint
in V2, i.e., the cut given by (V1, V2). By definition of G′, we know that every
crossing in the cut embedding associated to (V1, V2) corresponds to an edge
in G′ such that either both its endpoints belong to V1, or both belong to V2,
i.e., to an edge in E′ \ F ′. Thus, the number of crossings is |E′| − |F ′|. As |E′|
is constant for a fixed vertex permutation, the result follows. ut

Theorem 2. For a graph G = (V,E) with a fixed vertex permutation, there is a
planar fixed linear embedding of G if, and only if, the associated conflict graph G′

of G is bipartite.

Proof. Suppose H is a planar fixed linear embedding of G. Let E1 and E2 repre-
sent the two edge sets above and below the horizontal vertex line, respectively.
Then the vertices of G′ consist of two vertex sets V1 corresponding to E1 and V2

corresponding to E2. Since H is planar, there is no edge connecting vertices
from the same set. So G′ is bipartite. On the other hand, if G′ is bipartite, the
resulting cut embedding of G is obviously planar. ut

Observe that testing whether the graph G′ is bipartite can be done in linear
time (with respect to G′) by two-coloring a DFS-tree.

3.2 Solving MAXCUT by Branch-and-Cut

By Theorem 1, we can use any algorithm for MAXCUT in order to solve FLCNP.
One of the most successful approaches for solving MAXCUT to optimality in
practice is branch-and-cut.

It would go beyond the scope of this paper to explain this approach in detail.
Roughly, the problem is modelled as an integer linear program (ILP). This ILP is
first solved as a linear program (LP), i.e., the integrality constraints are relaxed.
LPs are solved very quickly in practice. If the LP-solution is integer, we can stop.
Otherwise, one tries to add cutting planes that are valid for all integer solutions
of the ILP but not necessary for (fractional) solutions of the LP. If such cutting
planes are found, they are added to the LP and the process is reiterated.

We have to resort to the branching part only if no more cutting planes are
found. In general, only a small portion of the enumeration tree has to be explored,
as many branches can be pruned. Compared to a pure branch-and-bound ap-
proach as presented in [1], the number of subproblems to be considered is very
small in general. This, however, depends on the quality of the cutting planes
being added. The latter in turn depend on the specific problem; finding good
cutting planes is a sophisticated task. Fortunately, the MAXCUT problem has
been investigated intensively, so that many classes of cutting planes are known.

More detailed information on algorithms for MAXCUT using cutting plane
techniques can be found in [7, 9]. Observe that MAXCUT can also be adressed
by semidefinite programming methods; see e.g. [8]. These methods perform well
on very dense instances, while being outperformed by ILP approaches on sparse
or large graphs. For this reason, we chose the latter method for our experiments.

4 Experimental Results

In order to evaluate the practical performance of our new exact approach to
FLCNP presented in the previous section, we performed extensive experiments.
In this section, we report the results and compare them to the results obtained
with the branch-and-bound algorithm proposed by Cimikowski [1]. The set of
test instances is exactly the same as used in [1].

These instances mainly arise from network models of computer architectures;
in general they are hamiltonian. The fixed order of nodes, as part of the input of
FLCNP, is then determined by a hamiltonian cycle in the graph, as an ordering
of the vertices along a hamiltonian cycle tends to yield a smaller number of
crossings in general. In our experiments, we always used the same ordering as
chosen in [1] for ensuring comparability.

More specifically, the networks considered are the following, see also [1]:

– complete graphs Kn for n = 5, . . . , 13
– hypercubic networks: this class of graphs includes the hypercubes Qd and

several derivatives of hypercubes such as the cube-connected-cycles CCCd,
the twisted cubes TQd, the crossed cubes CQd, the folded cubes FLQd, the
hamming cubes HQd, the binary de Bruijn graphs DBd and the undirected
de Bruijn graphs UDBd, the wrapped butterfly graphs WBFd and the shuffle-
exchange graphs SXd

– other interconnection networks, including the d×d tori Td,d, the star graphs
STd, the pancake graphs PKd, and the pyramid graphs PMd

– circular graphs: the circular graph Cn(a1, . . . , ak) is regular and hamiltonian.

In Table 1, we contrast our runtime results with those of the branch-and-bound
algorithm presented in [1]; we list all instances for which runtimes are reported
in [1]. For a better comparison, we ran both algorithms on the same machine, a
Pentium 4 with 2.8 GHz. The running times for the branch-and-bound algorithm
were obtained with the original implementation used in [1]. In the remainder of
this section, all running times are given in CPU seconds.

Table 1. Running times for exact approaches

instance B& B [1] MAXCUT

Q4 0.01 0.00
CCC3 0.02 0.00
SX4 0.01 0.00
FLQ4 0.13 0.42
UDB5 0.43 0.07
C26(1, 3) 0.46 0.00
T6,6 1.27 0.04
CCC4 2.59 0.01
K10 2.27 3.21
SX5 2.16 1.84
C20(1, 2, 3) 16.69 0.39
T7,7 64.89 0.15
C22(1, 2, 3) 73.16 0.39
K11 148.21 24.56
Q5 612.35 1.67
K12 1925.51 79.15
K13 > 86400.00 2119.12

Notice that in our approach we did not use any initial heuristics, in order
to give clearer and independent runtime figures. Nevertheless, as obvious from
Table 1, our approach is much faster than the branch-and-bound algorithm.
This is particularly true for sparse instances, e.g., Q5. However, our approach
outperforms [1] also on the larger complete graphs.

For all other instances, only heuristic results are given in [1]. Tables 2 and 3
state the results of our approach, sorted as in [1]. In all tables, the columns
show the following data: the name of the instance, the number of crossings
produced by the best and worst heuristics of [1], respectively, the optimal number
of crossings (when successfully computed by our approach), and the runtime of
our algorithm. However, as some instance are far too large for exact solution,
we had to set a general time limit of 24 hours. Whenever this limit was reached,
we report the best crossing number found instead of the optimal solution; the
figures are then put into brackets. Where an optimal solution was found for an
instance that was not solved to proven optimality before, we use italics. Bold
figures indicate that our algorithm could improve the best heuristic solution.

It is remarkable that many instances can be solved very quickly by our ap-
proach while others cannot even be solved in one CPU day. In other words, the
border line between easy instances (those solvable within 25 seconds, say) and
hard ones (those unsolved even in one day) is very sharp, few instances do not
fall into one of these categories.

Our results can also help to evaluate the quality of the heuristic methods. In
fact, it turns out that many heuristics proposed by [1] are able to find optimal or
near-optimal solutions even for larger instances. In summary, we think that small
to medium sized instances should be solved to optimality in general, whereas for
larger instances one can at least be confident that the heuristic solution is not
too far away from the optimum.

The algorithm we used for solving the MAXCUT problem is generally better
adapted to sparse graphs. This is reflected in the runtime figures presented in
this section. Therefore, practical instances tend to be easy for our approach.

5 Conclusion and Future Work

We have presented a new exact algorithm for the fixed linear crossing number
problem, running significantly faster than earlier exact algorithms. The essential
part of our approach is the reduction to the maximum cut problem. After this
transformation, the problem can be solved with a sophisticated mathematical
programming algorithm, based on the extensive knowledge that has been gath-
ered for the maximum cut problem by intensive research. Moreover, testing the
existence of a planar fixed linear embedding of a given graph can be done in an
easy way using this transformation. We believe that this principle can also be
applied to other linear embedding problems with different objective functions.

Our experimental results show that many medium sized instances can be
solved very quickly by our approach. However, for many large instances we
cannot find optimal solutions. For these instances, the heuristics proposed by
Cimikowski [1] are a good compromise between running time and quality. In
fact, our evaluation shows that in most cases at least one of these heuristics is
able to find the optimal solution.

In consequence, we plan to integrate good heuristics into our branch-and-cut
algorithm in order to further improve running times. In general, this can be done

in the same way as in the branch-and-bound approach. We are convinced that
this will considerably increase the performance of our approach.

Since the generation of edge crossings largely depends on the original vertex
ordering, it is crucial to study the general version of the linear crossing number
problem. We plan to develop heuristic or exact algorithms finding vertex order-
ings leading to a minimal number of potential edge crossings. Having done this,
we will be able to evaluate our approach on instances without a predetermined
order of vertices. In particular, we plan to test its performance on the graphs in
the well-known Rome library. As these graphs are usually very sparse, we are
convinced that we will be able to solve most of these instances to optimality.

Acknowledgement. We would like to thank Frauke Liers for providing us her
implementation of a branch-and-cut algorithm for the maximum cut problem.
Moreover, we are grateful to Robert Cimikowski for making his implementation
and experimental data available to us.

References

1. R. Cimikowski. Algorithms for the fixed linear crossing number problem. Disc.
Appl. Math., 122:93–115, 2002.

2. G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing
graphs: an annotated bibliography. Computational Geometry: Theory and Appli-
cations, 4:435–282, 1994.

3. Z. Galil, R. Kannan, and E. Szemerédi. On nontrivial separators for k -page graphs
and simulations by nondeterministic one-tape Turing machines. J. Comput. System
Sci., 38(1):134–149, 1989.

4. M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM J. Alg.
Disc. Meth., 4:312–316, 1983.

5. R. S. Gilbert and W. K. Kleinöder. CNMgraf – graphic presentation services for
network management. In Proc. 9th Symposium on Data Communication, pages
199–206, 1985.

6. T. Harju and L. Ilie. Forbidden subsequences and permutations sortable on two
parallel stacks. In Where mathematics, computer science, linguistics and biology
meet, pages 267–275. Kluwer, 2001.

7. M. Laurent. The max-cut problem. In M. Dell’Amico, F. Maffioli, and S. Martello,
editors, Annotated Bibliography in Combinatorial Optimization. Wiley, 1997.

8. M. Laurent and F. Rendl. Semidefinite programming and integer programming.
In Discrete Optimization, pages 393–514. Elsevier, 2005.

9. F. Liers, M. Jünger, G. Reinelt, and G. Rinaldi. Computing exact ground states of
hard Ising spin glass problems by branch-and-cut. In New Optimization Algorithms
in Physics, pages 47–69. Wiley-VCH, 2004.

10. S. Masuda, K. Nakajima, T. Kashiwabara, and T. Fujisawa. Crossing minimization
in linear embeddings of graphs. IEEE Trans. Comput., 39(1):124–127, 1990.

11. J. I. Munro and V. Raman. Succinct representation of balanced parentheses and
static trees. SIAM J. Comput., 31(3):762–776, 2001.

12. T. A. J. Nicholson. Permutation procedure for minimizing the number of crossings
in a network. In Proc. IEEE, volume 115, pages 21–26, 1968.

13. A. L. Rosenberg. DIOGENES, circa 1986. In Proc. VLSI Algorithms and Archi-
tectures, volume 227 of LNCS, pages 96–107. Springer, 1986.

Table 2. Experimental results, part I

instance best heuristic [1] worst heuristic [1] exact solution MAXCUT runtime

K5 1 1 1 0.00
K6 3 4 3 0.00
K7 9 11 9 0.01
K8 18 24 18 0.06
K9 36 46 36 0.83
K10 60 80 60 3.21
K11 100 130 100 24.56
K12 150 200 150 79.15
K13 225 295 225 2119.12

Q4 8 8 8 0.00
Q5 62 80 60 1.67
Q6 370 512 368 17924.24
Q7 1874 2688 [1894] > 86400.00

CCC3 0 4 0 0.00
CCC4 16 24 16 0.01
CCC5 104 148 104 3.99

SX4 7 8 7 0.00
SX5 60 74 60 1.84
SX6 281 333 [285] > 86400.00
SX7 1315 1554 [1319] > 86400.00

UDB4 5 5 5 0.00
UDB5 28 34 28 0.07
UDB6 149 183 148 19.88
UDB7 629 815 [646] > 86400.00
UDB8 2384 3065 [2387] > 86400.00

FLQ3 4 6 4 0.00
FLQ4 36 44 36 0.42
FLQ5 208 256 208 5981.78
FLQ6 1036 1320 [1061] > 86400.00
FLQ7 4712 6144 [4804] > 86400.00

TQ3 1 1 1 0.00
TQ4 8 10 8 0.00
TQ5 65 83 63 1.42
TQ6 372 516 372 28694.06
TQ7 1866 2693 [1916] > 86400.00

CQ3 1 1 1 0.00
CQ4 12 12 12 0.01
CQ5 88 106 88 6.47
CQ6 494 588 [508] > 86400.00
CQ7 2475 3056 [2481] > 86400.00

HQ3 5 6 5 0.00
HQ4 50 57 50 1.86
HQ5 303 361 [303] > 86400.00
HQ6 1523 1885 [1531] > 86400.00
HQ7 6913 8734 [7057] > 86400.00

WBF3 22 30 22 0.02
WBF4 164 205 158 22.54
WBF5 904 1066 [948] > 86400.00

Table 3. Experimental results, part II

instance best heuristic [1] worst heuristic [1] exact solution MAXCUT runtime

T3,3 3 4 3 0.00
T4,4 8 8 8 0.00
T5,5 20 30 20 0.02
T6,6 24 38 24 0.04
T7,7 48 70 48 0.15
T8,8 48 80 48 0.16
T9,9 88 142 88 0.71
T10,10 80 190 80 0.69

ST4 11 13 11 0.01
ST5 570 699 [572] > 86400.00

PK4 10 11 10 0.01
PK5 500 564 [514] > 86400.00

PM3 4 26 4 0.00
PM4 439 796 439 28964.87

C20(1, 2) 0 4 0 0.00
C20(1, 2, 3) 22 28 22 0.39
C20(1, 2, 3, 4) 70 98 70 1.49
C22(1, 2) 0 2 0 0.00
C22(1, 2, 3) 24 32 24 0.39
C22(1, 3, 5, 7) 200 254 200 191.70
C24(1, 3) 12 16 12 0.00
C24(1, 3, 5) 72 92 72 1.68
C24(1, 3, 5, 7) 216 282 216 266.11
C26(1, 3) 14 18 14 0.00
C26(1, 3, 5) 82 102 82 22.79
C26(1, 4, 7, 9) 364 446 364 19392.85
C28(1, 3) 16 20 14 0.00
C28(1, 3, 5) 86 110 86 3.38
C28(1, 2, 3, 4) 98 138 98 3.90
C28(1, 3, 5, 7, 9) 560 714 [560] > 86400.00
C30(1, 3, 5) 96 120 90 2.77
C30(1, 3, 5, 8) 302 348 [298] > 86400.00
C30(1, 2, 4, 5, 7) 392 470 [396] > 86400.00
C32(1, 2, 4, 6) 160 202 160 21.65
C34(1, 3, 5) 110 132 104 5.83
C34(1, 4, 8, 12) 574 670 [572] > 86400.00
C36(1, 2, 4) 36 60 36 0.03
C36(1, 3, 5, 7) 328 422 328 5624.53
C38(1, 7) 84 98 84 14.70
C38(1, 4, 7) 190 236 190 149.04
C40(1, 5) 56 64 56 5.04
C42(1, 4) 42 46 42 0.07
C42(1, 3, 6) 158 170 150 651.18
C42(1, 2, 4, 6) 210 284 210 115.16
C44(1, 4, 5) 180 200 180 53.72
C44(1, 4, 7, 10) 632 830 [648] > 86400.00
C46(1, 4) 46 50 46 0.07
C46(1, 5, 8) 296 374 294 1104.35

