2,893 research outputs found

    A Continuously Growing Dataset of Sentential Paraphrases

    Full text link
    A major challenge in paraphrase research is the lack of parallel corpora. In this paper, we present a new method to collect large-scale sentential paraphrases from Twitter by linking tweets through shared URLs. The main advantage of our method is its simplicity, as it gets rid of the classifier or human in the loop needed to select data before annotation and subsequent application of paraphrase identification algorithms in the previous work. We present the largest human-labeled paraphrase corpus to date of 51,524 sentence pairs and the first cross-domain benchmarking for automatic paraphrase identification. In addition, we show that more than 30,000 new sentential paraphrases can be easily and continuously captured every month at ~70% precision, and demonstrate their utility for downstream NLP tasks through phrasal paraphrase extraction. We make our code and data freely available.Comment: 11 pages, accepted to EMNLP 201

    Clutter-Based Dimension Reordering in Multi-Dimensional Data Visualization

    Get PDF
    Visual clutter denotes a disordered collection of graphical entities in information visualization. It can obscure the structure present in the data. Even in a small dataset, visual clutter makes it hard for the viewer to find patterns, relationships and structure. In this thesis, I study visual clutter with four distinct visualization techniques, and present the concept and framework of Clutter-Based Dimension Reordering (CBDR). Dimension order is an attribute that can significantly affect a visualization\u27s expressiveness. By varying the dimension order in a display, it is possible to reduce clutter without reducing data content or modifying the data in any way. Clutter reduction is a display-dependent task. In this thesis, I apply the CBDR framework to four different visualization techniques. For each display technique, I determine what constitutes clutter in terms of display properties, then design a metric to measure visual clutter in this display. Finally I search for an order that minimizes the clutter in a display. Different algorithms for the searching process are discussed in this thesis as well. In order to gather users\u27 responses toward the clutter measures used in the Clutter-Based Dimension Reordering process and validate the usefulness of CBDR, I also conducted an evaluation with two groups of users. The study result proves that users find our approach to be helpful for visually exploring datasets. The users also had many comments and suggestions for the CBDR approach as well as for visual clutter reduction in general. The content and result of the user study are included in this thesis

    The visual uncertainty paradigm for controlling screen-space information in visualization

    Get PDF
    The information visualization pipeline serves as a lossy communication channel for presentation of data on a screen-space of limited resolution. The lossy communication is not just a machine-only phenomenon due to information loss caused by translation of data, but also a reflection of the degree to which the human user can comprehend visual information. The common entity in both aspects is the uncertainty associated with the visual representation. However, in the current linear model of the visualization pipeline, visual representation is mostly considered as the ends rather than the means for facilitating the analysis process. While the perceptual side of visualization is also being studied, little attention is paid to the way the visualization appears on the display. Thus, we believe there is a need to study the appearance of the visualization on a limited-resolution screen in order to understand its own properties and how they influence the way they represent the data. I argue that the visual uncertainty paradigm for controlling screen-space information will enable us in achieving user-centric optimization of a visualization in different application scenarios. Conceptualization of visual uncertainty enables us to integrate the encoding and decoding aspects of visual representation into a holistic framework facilitating the definition of metrics that serve as a bridge between the last stages of the visualization pipeline and the user's perceptual system. The goal of this dissertation is three-fold: i) conceptualize a visual uncertainty taxonomy in the context of pixel-based, multi-dimensional visualization techniques that helps systematic definition of screen-space metrics, ii) apply the taxonomy for identifying sources of useful visual uncertainty that helps in protecting privacy of sensitive data and also for identifying the types of uncertainty that can be reduced through interaction techniques, and iii) application of the metrics for designing information-assisted models that help in visualization of high-dimensional, temporal data

    Enabling decision trend analysis with interactive scatter plot matrices visualization

    Full text link
    © 2015 Elsevier Ltd. This paper presents a new interactive scatter plot visualization for multi-dimensional data analysis. We apply Rough Set Theory (RST) to reduce the visual complexity through dimensionality reduction. We use an innovative point-to-region mouse click concept to enable direct interactions with scatter points that are theoretically impossible. To show the decision trend we use a virtual Z dimension to display a set of linear flows showing approximation of the decision trend. We conducted case studies to demonstrate the effectiveness and usefulness of our new technique for analyzing the property of three popular data sets including wine quality, wages and cars. The paper also includes a pilot usability study to evaluate parallel coordinate visualization with scatter plot matrices visualization with RST results
    corecore