20,818 research outputs found

    A pattern recognition methodology for analyzing residential customers load data and targeting demand response applications

    Full text link
    © 2019 Elsevier B.V. The availability of smart meter data allows defining innovative applications such as demand response (DR) programs for households. However, the dimensionality of data imposes challenges for the data mining of load patterns. In addition, the inherent variability of residential consumption patterns is a major problem for deciding on the characteristic consumption patterns and implementing proper DR settlements. In this regard, this paper utilizes a data size reduction and clustering methodology to analyze residential consumption behavior. Firstly, the distinctive time periods of household activity during the day are identified. Then, using these time periods, a modified symbolic aggregate approximation (SAX) technique is utilized to transform the load patterns into symbolic representations. In the next step, by applying a clustering method, the major consumption patterns are extracted and analyzed. Finally, the customers are ranked based on their stability over time. The proposed approach is applied on a large dataset of residential customers’ smart meter data and can achieve three main goals: 1) it reduces the dimensionality of data by utilizing the data size reduction, 2) it alleviates the problems associated with the clustering of residential customers, 3) its results are in accordance with the needs of systems operators or demand response aggregators and can be used for demand response targeting. The paper also provides a thorough analysis of different aspects of residential electricity consumption and various approaches to the clustering of households which can inform industry and research activity to optimize smart meter operational use

    Design agents and the need for high-dimensional perception

    Get PDF
    Designed artefacts may be quantified by any number of measures. This paper aims to show that in doing so, the particular measures used may matter very little, but as many as possible should be taken. A set of building plans is used to demonstrate that arbitrary measures of their shape serve to classify them into neighbourhood types, and the accuracy of classification increases as more are used, even if the dimensionality of the space in which classification occurs is held constant. It is further shown that two autonomous agents may independently choose sets of attributes by which to represent the buildings, but arrive at similar judgements as more are used. This has several implications for studying or simulating design. It suggests that quantitative studies of collections of artefacts may be made without requiring extensive knowledge of the best possible measures—often impossible in real, ill-defined, design situations. It suggests a means by which the generation of novelty can be explained in a group of agents with different ways of seeing a given event. It also suggests that communication can occur without the need for predetermined codes or protocols, introducing the possibility of alternative human-computer interfaces that may be useful in design
    • …
    corecore