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Designed artefacts may be quantified by any number of measures. This paper aims 
to show that in doing so, the particular measures used may matter very little, but 
as many as possible should be taken. A set of building plans is used to demon-
strate that arbitrary measures of their shape serve to classify them into neighbour-
hood types, and the accuracy of classification increases as more are used, even if 

the dimensionality of the space in which classification occurs is held constant. It is 
further shown that two autonomous agents may independently choose sets of at-
tributes by which to represent the buildings, but arrive at similar judgements as 
more are used. This has several implications for studying or simulating design. It 
suggests that quantitative studies of collections of artefacts may be made without 
requiring extensive knowledge of the best possible measures—often impossible in 

real, ill-defined, design situations. It suggests a means by which the generation of 
novelty can be explained in a group of agents with different ways of seeing a 
given event. It also suggests that communication can occur without the need for 
predetermined codes or protocols, introducing the possibility of alternative hu-
man-computer interfaces that may be useful in design. 

1.0 Introduction 

Examination of the act of design by an individual agent, whether human or 

artificial, frequently involves an attempt to define the way in which that 

agent perceives the world. This paper suggests that the specific attributes 

an agent may perceive are relatively unimportant, but rather it is a high 

dimensionality of perception or input that is necessary.  

In studying design or implementing an artificial agent, therefore, the at-

tributes of a design artefact to be measured need not—indeed, should 

not—be determined a priori. While the suggestion that any set of attributes 

will do may seem counterintuitive, this paper will attempt to show that 
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there is a more effective alternative strategy. This is to consider a large 

number of possible attribute dimensions, even if arbitrary, and allow the 

agent to select the relevant subset or subspace from these. This effectively 

allows for interpretation and reinterpretation on the part of the agent.  

The strategy will be demonstrated with respect to a real set of design ar-

tefacts: building plans taken from various neighbourhoods. By taking a 

number of quantifiable measures of the shape of each, it is possible to clas-

sify the buildings such that each is identifiable as belonging to its particu-

lar neighbourhood. In brief, it will be shown that while some measures 

may be more or less useful in this, the correct identification of buildings 

improves as more measures are taken.  

This has implications with respect to design creativity both at the level 

of the individual agent and of the group. For the individual, these concern 

the level at which symbolic representation occurs. Approaches to represen-

tation in Artificial Intelligence can be broadly positioned with respect to 

two extremes: a classical approach considering intelligence to be the ma-

nipulation of ―physical symbol systems‖ directly representing the world 

[1], and a radically embodied one in which the world need not be repre-

sented at all [2], [3]. While the latter has strong merits, there are many as-

pects of design, from words to drawing conventions to standardised CAD 

representations, that appear strongly symbolic at least as far as communi-

cation is concerned. These symbolic elements are characterised by an in-

terface that is clearly defined and comparatively low-bandwidth [4]—it is 

a reduction of the full dimensionality of possible measurements of the 

world. The classical assumption (famously made by Simon [5] in his de-

scription of an ant on the beach) is that this interface is identical to (or pos-

sibly external to) the boundary of the creative agent. What is suggested 

here, however, is that to the extent a symbolic interpretation or reduction 

of dimensionality exists, it must be internal to the creative agent. Percep-

tion is high-dimensional, then interpreted internally. 

For a collective of many agents, this implies there may be at one time a 

variety of different interpretations of any observed event, a phenomenon 

that is arguably necessary for the generation of novel ideas. Many theories 

of creativity take the essential moment of insight as ―seeing [something] 

as‖ something else [6] or changing ―frames of reference‖ [7]; even within 

the extreme symbolic stance, Newell and Simon [1] mention the potentia l 

advantage of ―moving from one representation to another‖. Clarke [8] ex-

plicitly notes from extensive archaeological data that novelty arises from 

small changes naturally inherent in the population; and reflective, herme-

neutical [9] and systems [10] approaches to creativity or design likewise 

suggest that this novelty arises naturally, without being artificially im-

posed. 
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Hillier and Hanson [11] introduce the concept of morphic languages, in 

which the linguistic expressions may be the designed artefacts themselves, 

but the lack of a single, shared symbol system extrinsic to the agent raises 

a potential problem for communication. This paper aims to show that 

changes can happen as a result of different interpretations, as above, but 

communication is still possible. It will outline how agents can still make 

similar decisions due to patterns inherent in the observations, and demon-

strate that this is possible for at least one set of data relevant to the design 

of architecture. 

Clark and Thornton [12] make a distinction between two types of ma-

chine learning problems: type-1, in which the relevant patterns in data are 

immediately apparent; and the more difficult and complex type-2, in which 

any number of arbitrary patterns may be seen, and the data must be re-

coded before the relevant regularities are visible. The latter type are appar-

ently far more prevalent in real world data (and interesting design situa-

tions), but by structuring our thought via language, social custom and other 

observation external to the data, humans demonstrate an ability to turn a 

type-2 problem into a tractable type-1. This paper will go a step further, to 

suggest that the data itself, in instances relevant to design, may gradually 

approach type-1 as more dimensions or attributes are observed. In this 

way, different agents may differ slightly in their independent judgements, 

yet overlap enough that communication via the morphic language of the 

artefacts themselves becomes possible.  

2.0 Relevance 

If it can be demonstrated that for many instances of design the particular 

choice of attributes/dimensions is of less relevance than the number used, 

this will impact at least three broad areas. 

In the first case, it determines the possibility of quantitatively studying 

design via its artefacts without having to be sure about the validity of the 

particular measuring system used. If two significantly high-dimensiona l 

systems will converge on the same results, either one may be used effec-

tively. This is particularly relevant as most real design situations deal with 

what Rittel and Weber [13] term ―wicked‖ problems—a set of problems 

which can never be clearly defined and have unforeseeable implications 

and effects. Thus in studying design to make recommendations for real de-

sign practice, one cannot rely on knowing enough about the problem in 

advance to inform the particular choice about the most relevant attributes 

to measure.   
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In the second case, it appears necessary for a proper understanding of 

creativity, with respect to reinterpretation [6], [7], [14] and social interac-

tion [9], [10], that the mechanisms for variance within a population be in-

vestigated. If creative leaps are ultimately rooted in small changes, a model 

that imposes these stochastically via straightforward random number gen-

eration (as occurs in ―creative‖ models from genetic algorithms to popula-

tions of agents) may miss a crucial feature. Investigating how differences 

in interpretation occur may outline and quantify how much larger changes 

occur in a social system. 

Finally, there is the very practical issue of how a designer can interact 

with the computer that is increasingly necessary in practice. Almost all 

current interfaces are constructed on the assumption that communication is 

based on predetermined protocols, often via agreed symbol systems, but 

this need not necessarily be the case. If two distinct agents can make simi-

lar judgements about an observed event via independently and arbitrarily 

chosen means of measuring it, then that event stands as effective commu-

nication. In the case of design, where an important element of communica-

tion is via sketching and similar methods that are both difficult to codify 

and easily reinterpreted, this may allow systems of interface with future 

design tools that are much more akin to the way designers interact with 

one another.  

3.0 Example systems: observing types in architecture 

The task of recognising and identifying distinct types of designed arte-

facts is taken as a primary subject of investigation relevant to design. Sev-

eral approaches to type exist, sometimes distinguishing it from style in re-

ferring to objective matters of utility rather than subjective judgement [15]. 

As the main aim of this paper is to demonstrate that predefinition of rele-

vant attributes is unnecessary, type will here refer broadly to all potentia l 

characteristics. In addition, the notion of a type is sometimes treated as 

clearly definable [16] and permanent [17], or sometimes recreated in every 

generation [18]. The latter view is taken again, for the same reason.  

 Clarke [8] sets out a clear working definition of type and demonstrates 

its effectiveness. An artefact type consists of a set of measureable attrib-

utes that is not monothetic, in that every member of the group displays all 

of the set of attributes, but polythetic, in that there is a looser overlap be-

tween attribute subsets. This correlation between individual members var-

ies by context and scale, as Clark also uses the polythetic set to describe 

assemblages and cultural groups at higher levels. The effectiveness of this 
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in an archaeological context is particularly relevant in that (as Clarke fre-

quently notes) the attributes available to the archaeologist are necessarily 

limited and arbitrarily selected by the gap in time. This definition also 

lends itself to multivariate and computational methods, cluster analysis, 

and unsupervised learning.   

The use of high-dimensional input has been shown effective in revealing 

types in artefacts at many levels of scale. For architectural and urban ex-

amples, spatial configuration is frequently represented topologically by a 

graph—the edit distance between these has been used, for example, to 

identify differences between Turkish and Greek house types in Cyprus 

[19]. At a larger scale, in a data set of 150 cities distributed around the 

world, the spectra of the entire street network graph was used to identify 

each as a vector in a 100 dimensional space, from which a subspace was 

extracted to represent the set [20]. The identification of a given city‘s geo-

graphical location was then found to be largely predictable purely by its 

form (fig 1). 

 

 

Fig 1. Cities represented by their graph spectra can be placed geographically 
based on the form of their street network [20].  

The use of such numerical type definitions has also been used to effec-

tively guide a search in design generation or optimisation, by defining an 

objective function for a genetic algorithm to produce desk arrangements 

for the layout of workplace interiors [21]. Here, the objective is not set ex-

plicitly, but derived independently by a supervised learning algorithm 

based on a set of precedent examples. The algorithm derives the relevant 

features from the input set (e.g. convex groups of desks, clusters of a cer-

tain size) without any prior definition of these features, and generates plans 

to match these. In each of these cases, input to the algorithm is high di-

mensional, then reduced as required.  

A similar set of types is used as the example for the work described 

here. The data is taken from a study of the properties of the building foot-

print and block configuration of four distinct neighbourhoods in Athens, 
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and one in London [22]. In this, it was demonstrated that a set of meas-

urements of arbitrarily selected attributes of the plans of each block were 

sufficient to classify them by neighbourhood, even though the particular 

features relevant to this were not known. A set of thirteen individual meas-

ures were used, including topological features such as number of courtyard 

voids and geometrical features such as fractal dimension. Principal com-

ponent analysis (PCA) of this thirteen dimensional space then revealed a 

distinct clustering of blocks by neighbourhood (fig 2).   

 

 

 

 

Fig 2. A set of measurements taken of the shape of urban blocks (top) allow them 
to be clustered into distinct neighbourhoods. Image: Laskari et al. [22].  

This example set of buildings has been chosen partly because its design 

scale is familiar. More importantly, while the dimensions of properties 

such as graph spectra are quite abstract, the particular measures used to de-

scribe the samples are each distinctly comprehensible, clear and distinct, 

even though their selection was arbitrary. The following section will inves-

tigate the reasons why such an arbitrary selection of attributes results in a 

correct classification into distinct neighbourhood clusters, and in particular 

the main hypothesis of this paper—that this is a result of there being a suf-

ficiently high number of such attributes in the data set.  
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4.0 Method and results 

Under almost any circumstances, increasing the number of dimensions will 

permit an increased number of possible allowable classifications—this 

need not be tested. What will be tested here is classification on the particu-

lar space given by PCA. This is an unsupervised method which will yield a 

fixed subspace determined by the variance of the set as a whole, regardless 

of any class labels that might be assigned. The degree to which such an un-

supervised (PCA) analysis of real samples allows classification into sepa-

rate groups will therefore indicate the degree to which independent agents 

may observe the same phenomena without prior labelling.  

Each sample is quantified by measurement of thirteen attributes, taken 

from [22] (the first four relate to changes in direct sight lines from differ-

ent locations on the perimeter of the internal voids, see [23]): 

1. mean connectivity value for the perimeter of the internal voids  

2. mean distance between subsequent points of mean connectivity  

3. vertical standard deviation of perimeter connectivity 

4. horizontal standard deviation of perimeter connectivity  

5. fractal dimension   

6. perimeter of all voids internal to the block  

7. number of voids internal to the block   

8. total block area   

9. building footprint area   

10. number of buildings in the block   

11. number of disjoint building clusters in the block  

12. ratio of internal voids open to the street  

13. number of vertices on the building contour 

In each of the following sections, the method will select subsets of at-

tributes, of sizes varying between a=1 and a=13. These will constitute the 

maximum possible input to a theoretical agent. Although far greater di-

mensionality would be possible, this range will suffice to show a clear 

trend of improved classification as more dimensions are used. PCA will 

then be performed on these to yield a feature space Φ of reduced dimen-

sionality d (typically three-dimensional). It is within this space Φ that clas-

sification will be performed, and the effectiveness of this determined by 

the minimum linear classification error within this reduced PCA space. 

Classification errors will be calculated as the ratio of incorrectly classi-

fied samples within the total set of 125 samples (25 building groups in 

each of 5 classes). Errors will therefore be shown to 3 significant digits. 



8  S. Hanna 

 

Fig 3. The classification error decreases as the space in which samples are classi-
fied increases in dimensions (bold indicates mean error, grey the range from min 
to max error.  

4.1 Effect of overall attribute dimensionality on classification  

Superficially, the number of dimensions used in any supervised classifica-

tion task will have an obvious effect on the accuracy of the results—more 

dimensions yield a greater variety of hyperplanes for drawing distinctions 

between classes, and if all samples are appropriately labelled, the system 

has more opportunities to select the appropriate ones. This can be clearly 

seen in the data (fig 3) with an expected decrease in error as dimensions 

increase from 1 to 13. (The mean error decreases monotonically while the 

minimum error reaches its optimum point at 8 dimensions, before the 

overall variance decreases due to a decreasing number of possible permu-

tations.) What is not obvious, however, is whether an increase in the over-

all number of available attributes is of any further benefit beyond this. The 

above fact gives no reason to expect any improvement in classification 

whatsoever when: 

a) the examples are not labelled (unsupervised learning), as would 

be required for autonomous reinterpretation, etc., or 
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b) a subspace of constant, reduced dimensionality is available, as 

is always necessary in practice—an infinite set of attributes 

theoretically exists but is impossible to observe.   

This section tests the hypothesis that the overall quantity of attributes is 

only relevant inasmuch as it provides a greater dimensionality in which ar-

bitrary classification can take place (and therefore more possible classifica-

tion hyperplanes), and finds it to be false. Rather, a pattern that may be 

considered intrinsic to the data set itself becomes progressively more evi-

dent as more attributes are used. 

The effect of varying numbers of attribute dimensions within the data 

set was tested by taking the mean errors of classifications performed 

within a subspace of constant dimensionality, derived from principal com-

ponents. A low dimensional subspace Φ of dimensionality d=1 to d=5 is 

taken from the principal components of the entire data set as specified by a 

given set of attributes a≥d. Classification errors are then compared from 

linear discriminant analyses performed in Φ of equal dimensionality d. By 

varying the number of attributes a used in each subspace Φ, the effect of 

available attribute dimensionality can thus be compared independently of 

the classification dimensionality d. All possible permutations of a attrib-

utes are used from the total set of 13, classification performed on the re-

sulting PCA subspaces Φ, then the overall mean error is recorded (fig 4) 

for increasing sets of attributes a=d to a=13.    

Bold lines show the mean classification errors in Φ of dimensionality 

d=1 (top) to d=5 (bottom). Where a=d (the minimum possible, with no re-

duction in dimensionality), classification is identical to that in the space of 

the original attributes and cannot be further improved. To the extent that 

the attribute dimensionality a is relevant only by virtue of increasing the 

dimensionality of the classification space φ, each of these mean errors 

should show no further improvement, and tests with randomly labelled 

data sets (dashed and thin lines, fig 3) show this to be the case. However, 

all tests show improved classification. For a single component (top) this 

improvement is negligible, but for 3, 4 and 5 dimensions d there is signifi-

cant improvement, approaching that of the optimal classification in the full 

dimensionality a of the original attributes. 

This demonstrates that an increased number of attributes is clearly of 

value in describing the structure of the data, even when only a fixed num-

ber of components are used. As more attributes are used, the dimensions in 

which the data is naturally most varied overall more closely approximate 

the dimensions most useful for distinguishing the separate subclasses. This 

result is far from inevitable, as the attributes in question were chosen arb i-

trarily and so may have turned out to be redundant or conflicting.  
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Fig 4. Classification error decreases as more initial attributes are used, even if the 
space of classification remains of a constant dimensionality. Bold lines indicate 
spaces Φ of 1 to 5 dimensions. Thin and dashed lines show no improvement for 

random data sets. 

What this suggests is that the subgroups or clusters revealed by PCA are 

inherent to the data itself, rather than arbitrary designations imposed by the 

particular labelling scheme—they are gradually revealed as Clark and 

Thornton‘s [12] type-1 as more attribute dimensions are used. By contrast,  

the narrow lines in figure 4 indicate the effect of arbitrarily chosen classes, 

with dashed lines showing the mean errors for the same data in which only 

the labels were sorted at random, and solid lines showing the same for data 

in which each attribute value was resorted independently. In all cases the 

error rates are not only poor, but fail to increase as more attributes are used 

to define them.  

This contrast indicates that the labelled clusters within the data set are 

intrinsically meaningful, in that they are discovered by unsupervised and 

unlabelled PCA, and are simply revealed by the measurement of larger sets 

of attributes. The following sections will unpack this observation by inves-

tigating whether a relationship is discernable for particular subsets of at-

tributes.  
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4.2 Effect of particular sets of attribute dimensions 

The possible subsets of attributes of any fixed dimensionality a are not 

equal in terms of accurate classification—there is some variance in the er-

ror rates from which the means above were taken. If constrained to a lim-

ited dimensionality of measurements to be taken, one would hope to be 

able to choose the optimal set of attributes to yield the best classification. 

This section examines whether the improvement in classification with lar-

ger sets above is a result of particular combinations of attributes, and 

whether these optimal combinations can be determined beforehand. It 

tests: 

a) whether any particular individual attributes can be found to con-

tribute to the overall reduction in misclassification error 

b) whether there are similarities between particular sets of attributes 

that reduce the error 

c) whether these attribute sets can be determined prior to performing 

the classification itself.   

 

Particular individual attributes were found not to contribute signifi-

cantly to the overall reduction in misclassification error. Contribution to 

errors for each attribute was calculated by taking the error rate (mean mis-

classified examples) in a constant subspace of dimensionality d=3 for all 

possible combinations of a=6 attributes that included the attribute in ques-

tion. A significant variation in these would indicate specific attributes re-

sponsible for error or correct classification. However, while errors using 

subsets of a=6 attributes had a considerable range from 0.296 to 0.616 

overall, the range in mean errors due to particular attributes was minor, as 

shown in table 1. 

Table 1. Contribution to errors: the mean errors for all sets of 6 attributes that in-
clude the attribute in question. 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 
.434 .464 .469 .459 .460 .465 .431 .457 .475 .447 .464 .451 .464 

 

This very slight contribution of each attribute to error rates became 

more significant, however, when particular sets of attributes were consid-

ered. While there was a negligible correlation (R=0.16) found between the 

similarity between any two sets of attributes and their error rates, the very 

best sets resulting in the lowest errors (0.296–0.313) were found to contain 

four of the same attributes in common: [1 7 12 13], so the effect of limiting 

the sets to particular attributes was tested next. Attributes were ordered 

based on their contribution to error in table 1, and both the ‗best‘ [7 1 10 
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12] and ‗worst‘ [9 3 6 13] were progressively removed from the available 

attributes. The mean and range of error rates for the remaining combina-

tions of attributes is shown in figure 5. A noticeable change in the classifi-

cation errors is evident here: rising monotonically when the ‗better‘ attrib-

utes are unavailable and vice-versa.  

 

 
Fig 5. Error rates of attribute subsets with specific attributes withheld. Er-

ror rates decrease when the ‗worst‘ attributes are not used, and rise when 

the ‗best‘ are withheld.  

 

In both tests above the optimal attributes for measurement were deter-

mined only by knowing the correct classification results—an impossibility 

if one is attempting a classification on unlabeled examples. The third test 

of attribute sets is whether these optimal subsets can be determined by any 

measurable diversity within the data as a whole, and therefore can be 

found before performing the actual classification itself. The increase in 

classification accuracy as dimensionality a increases (§4.1) suggests the 

hypothesis that the optimal attribute subsets are those that are most d i-

verse, in terms of each attribute independently providing more information 

about each example. If this is true, it would both explain this improvement 
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for large sets and suggest a method by which the appropriate attributes for 

any given data set can be found.  

The simplest measurement of the independence of two attributes with 

respect to the data is the correlation between their respective measures of 

all the examples in the data set. A high product of these coefficients for a 

given set of attributes should indicate greater independence or diversity 

and therefore a lower classification error. This was found not to be the 

case, with almost no correlation between attribute dimension diversity and 

error rate (r2<0.0025). A number of other measurements of attribute set di-

versity were also taken (product of minimum angles, sum or product of dot 

products, convex hull volume), using the projections of principle axes for 

each into the 3-dimensional classification space Φ, with similar results. 

Within each of these tests, neither the overall correlations nor the sets of 

attributes known to be error minimising revealed any discernable pattern—

these latter, ‗best‘ sets were sometimes of high diversity, but just as often 

medium or low.      

These results suggest that while some subsets of attributes of a fixed 

dimensionality a are clearly superior in terms of providing an accurate 

classification, these do not have any relationship to the distribution of the 

data that can be found prior to classification itself. One therefore cannot 

identify a priori which ones to use for the classification. 

4.3  Different sets of attributes for different classes 

Classification errors for all five classes have been used together to ex-

amine the attribute subsets above, but the resulting suggestion that particu-

lar attributes (e.g. 1, 7, 10, 12) are optimal is somewhat misleading, as dif-

ferent classes may be better distinguished by different attributes. Table 2 

shows the attributes that best classify each individual class in isolation 

(within a space φ of d=3, again found by PCA) for attribute sets of a=3, 

a=4, a=5 and a=6. The top row in each section shows the errors in each 

class for the optimal attribute set for Class 1, the second row for Class 2, 

etc. Those that are optimal for one class are not for another, as evidenced 

by the greater classification errors for other classes (grey cells), and the 

fact that many of these errors even increase as more dimensions are used. 

There is some overlap in the dimensions used—attributes 7 (no. of voids) 

and 8 (block area) occur repeatedly—but there is also a great deal of dif-

ference. When limited to three attributes, [7 8 10] provide an excellent 

classification of Class 1 samples, but the best subset for classification of 

Class 2 samples, [3 9 12], contains none of the same attributes. Nor are 

these particular sets of much use in classifying the other classes within the 

data set: while [3 9 12] yields a successful result (error=0.125) for Class 2, 
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it misclassifies nearly half of the Class 1 examples (error=0.42) and does 

little better for the others. The same effect can be seen for all classes and 

subset dimensionalities in the table. 

Table 2 The subset of attributes that best classify one class differ from those that 
best classify another. Bold indicates attributes that do not appear in the previous 
table.  

Best 3 attributes Class 1 Class 2 Class 3 Class 4 Class 5 

[7 8 10] 0.13 0.225 0.28 0.22 0.245 

[3 9 12] 0.42 0.125 0.31 0.35 0.27 

[7 8 13] 0.18 0.25 0.17 0.335 0.24 

[3 8 10] 0.245 0.18 0.27 0.16 0.36 

[1 7 12] 0.285 0.17 0.23 0.435 0.135 
 

Best 4 attributes Class 1 Class 2 Class 3 Class 4 Class 5 

[2 7 8 10] 0.125 0.215 0.28 0.24 0.2 

[4 5 8 12] 0.365 0.12 0.31 0.215 0.34 

[1 7 8 13] 0.235 0.27 0.165 0.405 0.19 

[3 5 11 13] 0.38 0.33 0.29 0.16 0.31 

[1 4 7 12] 0.28 0.145 0.26 0.285 0.115 
 

Best 5 attributes Class 1 Class 2 Class 3 Class 4 Class 5 

[2 4 7 8 10] 0.125 0.24 0.28 0.245 0.22 

[3 4 8 11 12] 0.395 0.115 0.29 0.325 0.395 

[1 8 10 11 13] 0.225 0.31 0.15 0.395 0.165 

[1 4 5 11 13] 0.315 0.29 0.305 0.155 0.235 

[1 2 5 7 10] 0.165 0.25 0.28 0.26 0.105 
 

Best 6 attributes Class 1 Class 2 Class 3 Class 4 Class 5 

[2 4 6 7 8 10] 0.125 0.245 0.29 0.24 0.215 

[2 3 4 8 11 12] 0.33 0.11 0.305 0.3 0.385 

[1 2 8 10 11 13] 0.225 0.235 0.145 0.33 0.245 

[1 2 4 5 11 13] 0.335 0.305 0.29 0.155 0.23 

[1 2 5 6 7 10] 0.195 0.315 0.3 0.24 0.08 

 

Worst attributes Class 1 Class 2 Class 3 Class 4 Class 5 

[1 3 6 9 12 13] 0.47 0.19 0.22 0.34 0.335 

[1 7 9 10 11 13] 0.155 0.455 0.26 0.33 0.22 

[1 2 3 4 5 6] 0.215 0.245 0.39 0.285 0.22 

[1 7 8 9 11 13] 0.26 0.27 0.225 0.525 0.215 

[3 6 9 11 12 13] 0.41 0.215 0.22 0.385 0.56 
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There is also less consistency than might be expected as the dimension-

ality of the attributes a increases. Attribute numbers in bold show the new 

attributes added to the optimal subset for each class as the subset increases 

by one. In many cases, several new attributes replace the previous ones, 

indicating several of those providing the best classification when only 

three are allowed are no longer optimal when four are used. The final por-

tion of Table 2 shows the worst performing attribute sets for each class, 

which reveals several attributes (not in bold) that appear also in the corre-

sponding sets of optimal attributes immediately above.            

These inconsistencies with respect to optimal attribute subsets for indi-

vidual classes reinforce the result of section 4.2. While certain attributes or 

attribute subsets are particularly well suited for classification of specific 

classes, there appears no way to determine these without knowing the clas-

sification beforehand.  

 

4.4 Mutual classification and communication 

In considering communication between two artificial agents, or between a 

human subject and a computer system (or by extension even between two 

human subjects), the overall error rate resulting from a single attribute sub-

set is less significant than the particular classifications that subset yields. 

For communication to be effective, it is necessary that the two agents in 

question make similar judgements on any given piece of data used for 

communication—that they see the world in a similar way. This section ex-

amines the way in which subsets of attribute dimensions matter with re-

spect to the specific examples being misclassified, and the manner of their 

misclassification.  

The mutual classification between pairs of attribute subsets was meas-

ured for subsets of a=3 to a=12. To determine the overall difference in 

how the pair perform, the total number of examples in the data set that the 

two classify differently is used; actual classification errors with respect to 

known labels are ignored. This difference in performance is then compared 

with the difference between the attributes themselves, where the similarity 

between any two attributes is calculated by the correlation between their 

independent classification of the data. The sum of these maximum correla-

tions gives an overall measure of similarity between any two subsets.     

Given the measure of the whole data set by one attribute α as 

Μ(α)={μ1,…, μn}, two attribute sets [α1, …, αa] and [β1, …, βa], and corre-

sponding sets of classification results [κα1, …, καn] and [κβ1, …, κβn], the 

difference in performance is given by: 
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and the similarity between attribute sets by: 

 

 
 

Figure 6 illustrates that differences between attribute sets do result in 

approximately corresponding differences between sets of misclassified ex-

amples, but only for small a. As a increases, this correlation between at-

tribute dimensions and classification results also decreases. For small sub-

sets of dimensions (3,4, etc.) there is a significant degree of correlation 

(approx r2=50%), however this decreases to insignificant correlation as 

more dimensions are added, with r2=12% for a=11 and r2=0.3% for a=12.  

 

 
Fig 6. Correlations between attribute subsets and classification results in-

dicate the degree to which mutual understanding is dependent on the use of 

the same attributes by both agents. It is highly dependent for small subsets 

of 3 or 4 (above), much less so for 11 or 12 (below).    
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With respect to the situation of two communicating agents, the prior 

agreement on the particular attribute dimensions used thus appears to mat-

ter greatly when the number of attributes is low, as evidenced by the strong 

correlations for low values of a. But this matters less the more dimensions 

we have. At the same time, increasing dimensions decreases the overall 

difference in performance between agents. If the general strategy for over-

all error reduction (as indicated in section 4.1) is to increase a, this also 

appears to improve the likelihood of different agents making same distinc-

tions (i.e. having similar φ) without prior agreement on the particular sets 

of attributes to use.   

5.0  Conclusion 

While one should generally expect to find a decrease in classification er-

ror as the number of dimensions of the classification space increases, there 

is no reason to expect this when a classification space of constant dimen-

sionality is derived from arbitrarily varying sets of initial dimensions. As 

seen in §4.1, this is not the case for a randomly labelled set of data. Never-

theless, classification in spaces derived by PCA (with 1 to 5 components) 

was seen overall to steadily improve as more initial dimensions were used 

(§4.1), suggesting that for data sets with similar properties to the one under 

investigation it is generally beneficial to use as many dimensions of meas-

urement as are available. 

There are, naturally, some particular small sets of attributes that yield a 

better classification than others, or better even than larger sets, but in prac-

tice there is no means for determining what these sets are. There appears to 

be no intrinsic relationship between these attributes (e.g. diversity) with re-

spect to the data as a whole (§4.2), and the best subset of attributes for one 

class are unsuited to another (§4.3). In practice, in creating a system that is 

to evaluate any group of artefacts, the remaining viable strategy is not to 

carefully select the subset of features thought to best describe the relevant 

classes, but to use the full set of as many features as are available.   

The reason larger sets result in better classification appears to be due to 

the nature of the examples themselves. Clark and Thornton‘s [12] distinc-

tion is useful: type-1 examples would contain regularities that are immedi-

ately apparent, while for type-2 the examples may afford a number of 

equally valid interpretations. The supposed way in which a culturally em-

bedded person deals with the latter is by relying on a structure imposed ex-

ternally by language or other cues to recode the observations to type-1. 
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However, there may be intermediate possibilities between the two types. A 

hypothetical set of examples, measured in infinite dimensions, may be 

type-1, but appear as type-2 when only a limited subset of these are used.  

If the classes are determined by a polythetic set of attributes [8] this is al-

most certain to be the case, because the incomplete overlap between attrib-

utes would be less evident as fewer attributes are used. It would appear 

that the urban block data used here is of this nature, thus as it is viewed in 

more dimensions, the inherent type-1 pattern becomes gradually more evi-

dent. 

This may also explain what is occurring when we are able to recognise 

as obvious distinct types in other sets of artefacts, even when we are un-

able to describe the specific criteria for the decision. The data set is type-1, 

but only when considered in many dimensions. If a continuum of interme-

diate possibilities is considered between type-1 and type-2, the degree to 

which classifications based on arbitrary subsets of attributes converge as 

those subsets increase in dimensionality offers a possible means of meas-

uring this for a given set of data.  

The observation that the overlap in attributes increases with larger sets 

implies that communication between distinct agents is possible without 

having to predetermine which particular dimensions are relevant. The 

strategy, again, of each agent using as many attributes as possible will en-

sure that each forms similar interpretations of a given event (§4.4).  

However, the use of different subsets of attributes by different agents in 

a population may help to explain the generation of the novelty that is es-

sential to the creative process in social models of creativity [10]. Many 

definitions of creativity hinge around coupled notions of novelty and util-

ity [24], but while the latter is clearly justifiable for straightforward func-

tional reasons, the need for novelty is less easily explained. If this novelty 

actually arises naturally, however, there need be no internal or externa l 

motivation required. It seems a fair conjecture that if slightly different sets 

of attributes can exist within a population that makes similar interpreta-

tions of events, then an ostensibly similar population may always contain 

some variance in its underlying choices of attributes, or ways of seeing. If 

an occasional event should arise that is interpreted differently among 

agents, an apparently novel difference of opinion will result. Such a variety 

of ways of seeing, or ―frames of reference‖ is often stressed as the crucia l 

component of creative insight [7][14], and appears in agent models of 

creativity [25][26]. In these, agents make design decisions by evaluating 

available options at any given point against a test criterion given by their 

own point of view. The result is that this difference in criteria easily drives 

collective innovation 
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This also provides a notion of novelty that is not at odds with that of 

utility. Creativity is often described as a series of paradoxes [27], or ex-

plained as seeking a median point between ―too similar‖ and ―too differ-

ent‖ [25], but the paradox does not exist if more dimensions are assumed. 

An interpretation of an event by an agent as perfectly normal may simply 

be seen by the next as highly unusual due to a measurement in a differing 

dimension. In human terms this conjecture needs further investigation, but 

it seems natural that we need only do what seems useful and appropriate to 

us, while others will always interpret things somewhat differently.  
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