2,719 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Inferring a Transcriptional Regulatory Network from Gene Expression Data Using Nonlinear Manifold Embedding

    Get PDF
    Transcriptional networks consist of multiple regulatory layers corresponding to the activity of global regulators, specialized repressors and activators of transcription as well as proteins and enzymes shaping the DNA template. Such intrinsic multi-dimensionality makes uncovering connectivity patterns difficult and unreliable and it calls for adoption of methodologies commensurate with the underlying organization of the data source. Here we present a new computational method that predicts interactions between transcription factors and target genes using a compendium of microarray gene expression data and the knowledge of known interactions between genes and transcription factors. The proposed method called Kernel Embedding of REgulatory Networks (KEREN) is based on the concept of gene-regulon association and it captures hidden geometric patterns of the network via manifold embedding. We applied KEREN to reconstruct gene regulatory interactions in the model bacteria E.coli on a genome-wide scale. Our method not only yields accurate prediction of verifiable interactions, which outperforms on certain metrics comparable methodologies, but also demonstrates the utility of a geometric approach to the analysis of high-dimensional biological data. We also describe the general application of kernel embedding techniques to some other function and network discovery algorithms

    Challenges of Big Data Analysis

    Full text link
    Big Data bring new opportunities to modern society and challenges to data scientists. On one hand, Big Data hold great promises for discovering subtle population patterns and heterogeneities that are not possible with small-scale data. On the other hand, the massive sample size and high dimensionality of Big Data introduce unique computational and statistical challenges, including scalability and storage bottleneck, noise accumulation, spurious correlation, incidental endogeneity, and measurement errors. These challenges are distinguished and require new computational and statistical paradigm. This article give overviews on the salient features of Big Data and how these features impact on paradigm change on statistical and computational methods as well as computing architectures. We also provide various new perspectives on the Big Data analysis and computation. In particular, we emphasis on the viability of the sparsest solution in high-confidence set and point out that exogeneous assumptions in most statistical methods for Big Data can not be validated due to incidental endogeneity. They can lead to wrong statistical inferences and consequently wrong scientific conclusions

    A Taxonomy of Big Data for Optimal Predictive Machine Learning and Data Mining

    Full text link
    Big data comes in various ways, types, shapes, forms and sizes. Indeed, almost all areas of science, technology, medicine, public health, economics, business, linguistics and social science are bombarded by ever increasing flows of data begging to analyzed efficiently and effectively. In this paper, we propose a rough idea of a possible taxonomy of big data, along with some of the most commonly used tools for handling each particular category of bigness. The dimensionality p of the input space and the sample size n are usually the main ingredients in the characterization of data bigness. The specific statistical machine learning technique used to handle a particular big data set will depend on which category it falls in within the bigness taxonomy. Large p small n data sets for instance require a different set of tools from the large n small p variety. Among other tools, we discuss Preprocessing, Standardization, Imputation, Projection, Regularization, Penalization, Compression, Reduction, Selection, Kernelization, Hybridization, Parallelization, Aggregation, Randomization, Replication, Sequentialization. Indeed, it is important to emphasize right away that the so-called no free lunch theorem applies here, in the sense that there is no universally superior method that outperforms all other methods on all categories of bigness. It is also important to stress the fact that simplicity in the sense of Ockham's razor non plurality principle of parsimony tends to reign supreme when it comes to massive data. We conclude with a comparison of the predictive performance of some of the most commonly used methods on a few data sets.Comment: 18 pages, 2 figures 3 table

    Distributed Correlation-Based Feature Selection in Spark

    Get PDF
    CFS (Correlation-Based Feature Selection) is an FS algorithm that has been successfully applied to classification problems in many domains. We describe Distributed CFS (DiCFS) as a completely redesigned, scalable, parallel and distributed version of the CFS algorithm, capable of dealing with the large volumes of data typical of big data applications. Two versions of the algorithm were implemented and compared using the Apache Spark cluster computing model, currently gaining popularity due to its much faster processing times than Hadoop's MapReduce model. We tested our algorithms on four publicly available datasets, each consisting of a large number of instances and two also consisting of a large number of features. The results show that our algorithms were superior in terms of both time-efficiency and scalability. In leveraging a computer cluster, they were able to handle larger datasets than the non-distributed WEKA version while maintaining the quality of the results, i.e., exactly the same features were returned by our algorithms when compared to the original algorithm available in WEKA.Comment: 25 pages, 5 figure

    Dimensionality Reduction Approach using Attributes Extraction and Attributes Selection in Gene Expression Databases

    Get PDF
    The gene expression databases are formed by a high number of attributes. To deal with this amount, data dimensionality reduction is used in order to minimize the volume of data to be treated regarding the number of attributes, and to increase the generalization capability of learning methods by eliminating irrelevant and/or redundant data. This paper proposes an approach to means of dimensionality reduction, which joins attribute extraction and attributes selection. For this, we used the Random Projection method and the filter and wrapper approaches for the attribute selection. The experiments are realized in five gene expression microarray databases. The results of the experiments showed that join of those approaches can provide promising results

    Case-based retrieval framework for gene expression data

    Full text link
    © the authors, publisher and licensee Libertas academica Limited. Background: The process of retrieving similar cases in a case-based reasoning system is considered a big challenge for gene expression data sets. The huge number of gene expression values generated by microarray technology leads to complex data sets and similarity measures for high-dimensional data are problematic. Hence, gene expression similarity measurements require numerous machine-learning and data-mining techniques, such as feature selection and dimensionality reduction, to be incorporated into the retrieval process.Methods: This article proposes a case-based retrieval framework that uses a k-nearest-neighbor classifier with a weighted-feature-based similarity to retrieve previously treated patients based on their gene expression profiles. Results: The herein-proposed methodology is validated on several data sets: a childhood leukemia data set collected from The Children’s Hospital at Westmead, as well as the Colon cancer, the National Cancer Institute (NCI), and the Prostate cancer data sets. Results obtained by the proposed framework in retrieving patients of the data sets who are similar to new patients are as follows: 96% accuracy on the childhood leukemia data set, 95% on the NCI data set, 93% on the Colon cancer data set, and 98% on the Prostate cancer data set. Conclusion: The designed case-based retrieval framework is an appropriate choice for retrieving previous patients who are similar to a new patient, on the basis of their gene expression data, for better diagnosis and treatment of childhood leukemia. Moreover, this framework can be applied to other gene expression data sets using some or all of its steps
    • …
    corecore