4,458 research outputs found

    Manifold Elastic Net: A Unified Framework for Sparse Dimension Reduction

    Full text link
    It is difficult to find the optimal sparse solution of a manifold learning based dimensionality reduction algorithm. The lasso or the elastic net penalized manifold learning based dimensionality reduction is not directly a lasso penalized least square problem and thus the least angle regression (LARS) (Efron et al. \cite{LARS}), one of the most popular algorithms in sparse learning, cannot be applied. Therefore, most current approaches take indirect ways or have strict settings, which can be inconvenient for applications. In this paper, we proposed the manifold elastic net or MEN for short. MEN incorporates the merits of both the manifold learning based dimensionality reduction and the sparse learning based dimensionality reduction. By using a series of equivalent transformations, we show MEN is equivalent to the lasso penalized least square problem and thus LARS is adopted to obtain the optimal sparse solution of MEN. In particular, MEN has the following advantages for subsequent classification: 1) the local geometry of samples is well preserved for low dimensional data representation, 2) both the margin maximization and the classification error minimization are considered for sparse projection calculation, 3) the projection matrix of MEN improves the parsimony in computation, 4) the elastic net penalty reduces the over-fitting problem, and 5) the projection matrix of MEN can be interpreted psychologically and physiologically. Experimental evidence on face recognition over various popular datasets suggests that MEN is superior to top level dimensionality reduction algorithms.Comment: 33 pages, 12 figure

    Nonlinear Supervised Dimensionality Reduction via Smooth Regular Embeddings

    Full text link
    The recovery of the intrinsic geometric structures of data collections is an important problem in data analysis. Supervised extensions of several manifold learning approaches have been proposed in the recent years. Meanwhile, existing methods primarily focus on the embedding of the training data, and the generalization of the embedding to initially unseen test data is rather ignored. In this work, we build on recent theoretical results on the generalization performance of supervised manifold learning algorithms. Motivated by these performance bounds, we propose a supervised manifold learning method that computes a nonlinear embedding while constructing a smooth and regular interpolation function that extends the embedding to the whole data space in order to achieve satisfactory generalization. The embedding and the interpolator are jointly learnt such that the Lipschitz regularity of the interpolator is imposed while ensuring the separation between different classes. Experimental results on several image data sets show that the proposed method outperforms traditional classifiers and the supervised dimensionality reduction algorithms in comparison in terms of classification accuracy in most settings

    Visualizing probabilistic models: Intensive Principal Component Analysis

    Full text link
    Unsupervised learning makes manifest the underlying structure of data without curated training and specific problem definitions. However, the inference of relationships between data points is frustrated by the `curse of dimensionality' in high-dimensions. Inspired by replica theory from statistical mechanics, we consider replicas of the system to tune the dimensionality and take the limit as the number of replicas goes to zero. The result is the intensive embedding, which is not only isometric (preserving local distances) but allows global structure to be more transparently visualized. We develop the Intensive Principal Component Analysis (InPCA) and demonstrate clear improvements in visualizations of the Ising model of magnetic spins, a neural network, and the dark energy cold dark matter ({\Lambda}CDM) model as applied to the Cosmic Microwave Background.Comment: 6 pages, 5 figure

    The Shape of Art History in the Eyes of the Machine

    Full text link
    How does the machine classify styles in art? And how does it relate to art historians' methods for analyzing style? Several studies have shown the ability of the machine to learn and predict style categories, such as Renaissance, Baroque, Impressionism, etc., from images of paintings. This implies that the machine can learn an internal representation encoding discriminative features through its visual analysis. However, such a representation is not necessarily interpretable. We conducted a comprehensive study of several of the state-of-the-art convolutional neural networks applied to the task of style classification on 77K images of paintings, and analyzed the learned representation through correlation analysis with concepts derived from art history. Surprisingly, the networks could place the works of art in a smooth temporal arrangement mainly based on learning style labels, without any a priori knowledge of time of creation, the historical time and context of styles, or relations between styles. The learned representations showed that there are few underlying factors that explain the visual variations of style in art. Some of these factors were found to correlate with style patterns suggested by Heinrich W\"olfflin (1846-1945). The learned representations also consistently highlighted certain artists as the extreme distinctive representative of their styles, which quantitatively confirms art historian observations
    • …
    corecore