154,845 research outputs found

    Dimensional Affect and Expression in Natural and Mediated Interaction

    Full text link
    There is a perceived controversy as to whether the cognitive representation of affect is better modelled using a dimensional or categorical theory. This paper first suggests that these views are, in fact, compatible. The paper then discusses this theme and related issues in reference to a commonly stated application domain of research on human affect and expression: human computer interaction (HCI). The novel suggestion here is that a more realistic framing of studies of human affect in expression with reference to HCI and, particularly HCHI (Human-Computer-Human Interaction) entails some re-formulation of the approach to the basic phenomena themselves. This theme is illustrated with several examples from several recent research projects.Comment: Invited article presented at the 23rd Annual Meeting of the International Society for Psychophysics, Tokyo, Japan, 20-23 October, 2007, Proceedings of Fechner Day vol. 23 (2007

    Immune Response Modulation by Tumor-Secreted Glycosphingolipids

    Get PDF
    Although originally considered merely structural components of cellular membranes, glycosphingolipids (GSL) arenow recognized as having critical effects on cellular physiology, including proliferation, differentiation, viraltransformation and ontogenesis. In addition, a vast majority of human cancers have modified GSL compositioncompared to parental normal cells. These modifications may contribute to both tumor survival and exert strikingeffects on anti-tumor immunity. In this review, we discuss mechanisms of immune modulation by tumor-secreted GSL.Fil: Lardone, Ricardo Dante. John Wayne Cancer Institute at Providence Saint John’s Health Center. Santa Monica; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigaciones en Química Biológica de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Centro de Investigaciones en Química Biológica de Córdoba; ArgentinaFil: Cely, Ingrid. John Wayne Cancer Institute at Providence Saint John’s Health Center. Santa Monica; Estados UnidosFil: Sieling, Peter A.. John Wayne Cancer Institute at Providence Saint John’s Health Center. Santa Monica; Estados UnidosFil: Lee, Delphine. John Wayne Cancer Institute at Providence Saint John’s Health Center. Santa Monica; Estados Unido

    Hepatitis C virus relies on lipoproteins for its life cycle

    Get PDF
    Hepatitis C virus (HCV) infects over 150 million people worldwide. In most cases, HCV infection becomes chronic causing liver disease ranging from fibrosis to cirrhosis and hepatocellular carcinoma. Viral persistence and pathogenesis are due to the ability of HCV to deregulate specific host processes, mainly lipid metabolism and innate immunity. In particular, HCV exploits the lipoprotein machineries for almost all steps of its life cycle. The aim of this review is to summarize current knowledge concerning the interplay between HCV and lipoprotein metabolism. We discuss the role played by members of lipoproteins in HCV entry, replication and virion production

    From screen to target: insights and approaches for the development of anti-virulence compounds

    Get PDF
    A detailed understanding of host-pathogen interactions provides exciting opportunities to interfere with the infection process. Anti-virulence compounds aim to modulate or pacify pathogenesis by reducing expression of critical virulence determinants. In particular, prevention of attachment by inhibiting adhesion mechanisms has been the subject of intense research. Whilst it has proven relatively straightforward to develop robust screens for potential anti-virulence compounds, understanding their precise mode of action has proven much more challenging. In this review we illustrate this challenge from our own experiences working with the salicylidene acylhydrazide group of compounds. We aim to provide a useful perspective to guide researchers interested in this field and to avoid some of the obvious pitfalls

    A fibrocontractive mechanochemical model of dermal wound\ud closure incorporating realistic growth factor kinetics

    Get PDF
    Fibroblasts and their activated phenotype, myofibroblasts, are the primary cell types involved in the contraction associated with dermal wound healing. Recent experimental evidence indicates that the transformation from fibroblasts to myofibroblasts involves two distinct processes: the cells are stimulated to change phenotype by the combined actions of transforming growth factor β (TGFβ) and mechanical tension. This observation indicates a need for a detailed exploration of the effect of the strong interactions between the mechanical changes and growth factors in dermal wound healing. We review the experimental findings in detail and develop a model of dermal wound healing that incorporates these phenomena. Our model includes the interactions between TGFβ and collagenase, providing a more biologically realistic form for the growth factor kinetics than those included in previous mechanochemical descriptions. A comparison is made between the model predictions and experimental data on human dermal wound healing and all the essential features are well matched

    Current Status of Defensins and Their Role in Innate and Adaptive Immunity

    Get PDF
    Naturally occurring antimicrobial cationic polypeptides play a major role in innate and adaptive immunity. These polypeptides are found to be either linear and unstructured or structured through disulfide bonds. Among the structured antimicrobial polypeptides, defensins comprise a family of cysteine-rich cationic polypeptides that contribute significantly to host defense against the invasion of microorganisms in animals, humans, insects and plants. Their wide-spread occurrence in various tissues of these diverse organisms, and their importance in innate and adaptive immunity have led to their identification, isolation and characterization. A large volume of literature is available on defensins’ occurrence, structural characterization, gene expression and regulation under normal and pathological conditions. Much has also been published regarding their antimicrobial, antiviral and chemoattractive properties, and their molecular and cellular interactions. In this review, we describe the current status of our knowledge of defensins with respect to their molecular, cellular and structural biology, their role in host defense, future research paradigms and the possibility of their utilization as a new class of non-toxic antimicrobial agents and immuno-modulators

    The Phenomenology of Universal Extra Dimensions at Hadron Colliders

    Full text link
    Theories with extra dimensions of inverse TeV size (or larger) predict a multitude of signals which can be searched for at present and future colliders. In this paper, we review the different phenomenological signatures of a particular class of models, universal extra dimensions, where all matter fields propagate in the bulk. Such models have interesting features, in particular Kaluza-Klein (KK) number conservation, which makes their phenomenology similar to that of supersymmetric theories. Thus, KK excitations of matter are produced in pairs, and decay to a lightest KK particle (LKP), which is stable and weakly interacting, and therefore will appear as missing energy in the detector (similar to a neutralino LSP). Adding gravitational interactions which can break KK number conservation greatly expands the class of possible signatures. Thus, if gravity is the primary cause for the decay of KK excitations of matter, the experimental signals at hadron colliders will be jets + missing energy, which is typical of supergravity models. If the KK quarks and gluons decay first to the LKP, which then decays gravitationally, the experimental signal will be photons and/or leptons (with some jets), which resembles the phenomenology of gauge mediated supersymmetry breaking models.Comment: review article, 39 pages, 10 figures, uses IJMPA style file

    Loop-Less Electric Dipole Moment of the Nucleon in the Standard Model

    Full text link
    We point out that the electric dipole moment of the neutron in the Standard Model is generated already at tree level to the second order in the weak interactions due to bound-state effects, without short-distance Penguin loops. The related contribution has a regular nonvanishing chiral limit and does not depend on the mass splitting between s and d quarks. We estimate it to be roughly 10^(-31)e*cm and expect a more accurate evaluation in the future. We comment on the connection between d_n and the direct CP-violation in D decays.Comment: 10 pages, 2 figure
    corecore