262 research outputs found

    Dimension reduction by random hyperplane tessellations

    Full text link
    Given a subset K of the unit Euclidean sphere, we estimate the minimal number m = m(K) of hyperplanes that generate a uniform tessellation of K, in the sense that the fraction of the hyperplanes separating any pair x, y in K is nearly proportional to the Euclidean distance between x and y. Random hyperplanes prove to be almost ideal for this problem; they achieve the almost optimal bound m = O(w(K)^2) where w(K) is the Gaussian mean width of K. Using the map that sends x in K to the sign vector with respect to the hyperplanes, we conclude that every bounded subset K of R^n embeds into the Hamming cube {-1, 1}^m with a small distortion in the Gromov-Haussdorf metric. Since for many sets K one has m = m(K) << n, this yields a new discrete mechanism of dimension reduction for sets in Euclidean spaces.Comment: 17 pages, 3 figures, minor update

    The stochastic geometry of unconstrained one-bit data compression

    Get PDF
    A stationary stochastic geometric model is proposed for analyzing the data compression method used in one-bit compressed sensing. The data set is an unconstrained stationary set, for instance all of Rn\mathbb{R}^n or a stationary Poisson point process in Rn\mathbb{R}^n. It is compressed using a stationary and isotropic Poisson hyperplane tessellation, assumed independent of the data. That is, each data point is compressed using one bit with respect to each hyperplane, which is the side of the hyperplane it lies on. This model allows one to determine how the intensity of the hyperplanes must scale with the dimension nn to ensure sufficient separation of different data by the hyperplanes as well as sufficient proximity of the data compressed together. The results have direct implications in compressive sensing and in source coding.Comment: 29 page

    Robust 1-bit compressed sensing and sparse logistic regression: A convex programming approach

    Full text link
    This paper develops theoretical results regarding noisy 1-bit compressed sensing and sparse binomial regression. We show that a single convex program gives an accurate estimate of the signal, or coefficient vector, for both of these models. We demonstrate that an s-sparse signal in R^n can be accurately estimated from m = O(slog(n/s)) single-bit measurements using a simple convex program. This remains true even if each measurement bit is flipped with probability nearly 1/2. Worst-case (adversarial) noise can also be accounted for, and uniform results that hold for all sparse inputs are derived as well. In the terminology of sparse logistic regression, we show that O(slog(n/s)) Bernoulli trials are sufficient to estimate a coefficient vector in R^n which is approximately s-sparse. Moreover, the same convex program works for virtually all generalized linear models, in which the link function may be unknown. To our knowledge, these are the first results that tie together the theory of sparse logistic regression to 1-bit compressed sensing. Our results apply to general signal structures aside from sparsity; one only needs to know the size of the set K where signals reside. The size is given by the mean width of K, a computable quantity whose square serves as a robust extension of the dimension.Comment: 25 pages, 1 figure, error fixed in Lemma 4.

    Extremes for the inradius in the Poisson line tessellation

    Get PDF
    A Poisson line tessellation is observed within a window. With each cell of the tessellation, we associate the inradius, which is the radius of the largest ball contained in the cell. Using Poisson approximation, we compute the limit distributions of the largest and smallest order statistics for the inradii of all cells whose nuclei are contained in the window in the limit as the window is scaled to infinity. We additionally prove that the limit shape of the cells minimising the inradius is a triangle
    • …
    corecore