2 research outputs found

    Spatially informed Bayesian neural network for neurodegenerative diseases classification

    Get PDF
    Magnetic resonance imaging (MRI) plays an increasingly important role in the diagnosis and prognosis of neurodegenerative diseases. One field of extensive clinical use of MRI is the accurate and automated classification of degenerative disorders. Most of current classification studies either do not mirror medical practice where patients may exhibit early stages of the disease, comorbidities, or atypical variants, or they are not able to produce probabilistic predictions nor account for uncertainty. Also, the spatial heterogeneity of the brain alterations caused by neurodegenerative processes is not usually considered, despite the spatial configuration of the neuronal loss is a characteristic hallmark for each disorder. In this article, we propose a classification technique that incorporates uncertainty and spatial information for distinguishing between healthy subjects and patients from four distinct neurodegenerative diseases: Alzheimer's disease, mild cognitive impairment, Parkinson's disease, and Multiple Sclerosis. We introduce a spatially informed Bayesian neural network (SBNN) that combines a three-dimensional neural network to extract neurodegeneration features from MRI, Bayesian inference to account for uncertainty in diagnosis, and a spatially informed MRI image using hidden Markov random fields to encode cerebral spatial information. The SBNN model demonstrates that classification accuracy increases up to 25% by including a spatially informed MRI scan. Furthermore, the SBNN provides a robust probabilistic diagnosis that resembles clinical decision-making and can account for the heterogeneous medical presentations of neurodegenerative disorders

    Dilated Deeply Supervised Networks for Hippocampus Segmentation in MRI

    No full text
    Tissue loss in the hippocampi has been heavily correlated with the progression of Alzheimer’s Disease (AD). The shape and structure of the hippocampus are important factors in terms of early AD diagnosis and prognosis by clinicians. However, manual segmentation of such subcortical structures in MR studies is a challenging and subjective task. In this paper, we investigate variants of the well known 3D U-Net, a type of convolution neural network (CNN) for semantic segmentation tasks.We propose an alternative form of the 3D U-Net, which uses dilated convolutions and deep supervision to incorporate multi-scale information into the model. The proposed method is evaluated on the task of hippocampus head and body segmentation in an MRI dataset, provided as part of the MICCAI 2018 segmentation decathlon challenge. The experimental results show that our approach outperforms other conventional methods in terms of different segmentation accuracy metrics
    corecore